Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Evaluating Network Security Configuration (NSC) Practices in Vehicle-Related Android Applications

2024-04-09
2024-01-2881
Android applications have historically faced vulnerabilities to man-in-the-middle attacks due to insecure custom SSL/TLS certificate validation implementations. In response, Google introduced the Network Security Configuration (NSC) as a configuration-based solution to improve the security of certificate validation practices. NSC was initially developed to enhance the security of Android applications by providing developers with a framework to customize network security settings. However, recent studies have shown that it is often not being leveraged appropriately to enhance security. Motivated by the surge in vehicular connectivity and the corresponding impact on user security and data privacy, our research pivots to the domain of mobile applications for vehicles. As vehicles increasingly become repositories of personal data and integral nodes in the Internet of Things (IoT) ecosystem, ensuring their security moves beyond traditional issues to one of public safety and trust.
Technical Paper

V2X Communication Protocols to Enable EV Battery Capacity Measurement: A Review

2024-04-09
2024-01-2168
The US EPA and the California Air Resources Board (CARB) require electric vehicle range to be determined according to the Society of Automotive Engineers (SAE) surface vehicle recommended practice J1634 - Battery Electric Vehicle Energy Consumption and Range Test Procedure. In the 2021 revision of the SAE J1634, the Short Multi-Cycle Test (SMCT) was introduced. The proposed testing protocol eases the chassis dynamometer test burden by performing a 2.1-hour drive cycle on the dynamometer, followed by discharging the remaining battery energy into a battery cycler to determine the Useable Battery Energy (UBE). Opting for a cycler-based discharge is financially advantageous due to the extended operating time required to fully deplete a 70-100kWh battery commonly found in Battery Electric Vehicles (BEVs).
Technical Paper

Approaches for Developing and Evaluating Emerging Partial Driving Automation System HMIs

2024-04-09
2024-01-2055
Level 2 (L2) partial driving automation systems are rapidly emerging in the marketplace. L2 systems provide sustained automatic longitudinal and lateral vehicle motion control, reducing the need for drivers to continuously brake, accelerate and steer. Drivers, however, remain critically responsible for safely detecting and responding to objects and events. This paper summarizes variations of L2 systems (hands-on and/or hands-free) and considers human drivers’ roles when using L2 systems and for designing Human-Machine Interfaces (HMIs), including Driver Monitoring Systems (DMSs). In addition, approaches for examining potential unintended consequences of L2 usage and evaluating L2 HMIs, including field safety effect examination, are reviewed. The aim of this paper is to guide L2 system HMI development and L2 system evaluations, especially in the field, to support safe L2 deployment, promote L2 system improvements, and ensure well-informed L2 policy decision-making.
Technical Paper

Assessing Resilience in Lane Detection Methods: Infrastructure-Based Sensors and Traditional Approaches for Autonomous Vehicles

2024-04-09
2024-01-2039
Traditional autonomous vehicle perception subsystems that use onboard sensors have the drawbacks of high computational load and data duplication. Infrastructure-based sensors, which can provide high quality information without the computational burden and data duplication, are an alternative to traditional autonomous vehicle perception subsystems. However, these technologies are still in the early stages of development and have not been extensively evaluated for lane detection system performance. Therefore, there is a lack of quantitative data on their performance relative to traditional perception methods, especially during hazardous scenarios, such as lane line occlusion, sensor failure, and environmental obstructions.
Technical Paper

Real World Use Case Evaluation of Radar Retro-reflectors for Autonomous Vehicle Lane Detection Applications

2024-04-09
2024-01-2042
Lane detection plays a critical role in autonomous vehicles for safe and reliable navigation. Lane detection is traditionally accomplished using a camera sensor and computer vision processing. The downside of this traditional technique is that it can be computationally intensive when high quality images at a fast frame rate are used and has reliability issues from occlusion such as, glare, shadows, active road construction, and more. This study addresses these issues by exploring alternative methods for lane detection in specific scenarios caused from road construction-induced lane shift and sun glare. Specifically, a U-Net, a convolutional network used for image segmentation, camera-based lane detection method is compared with a radar-based approach using a new type of sensor previously unused in the autonomous vehicle space: radar retro-reflectors.
Technical Paper

Engineering Requirements that Address Real World Hazards from Using High-Definition Maps, GNSS, and Weather Sensors in Autonomous Vehicles

2024-04-09
2024-01-2044
Evaluating real-world hazards associated with perception subsystems is critical in enhancing the performance of autonomous vehicles. The reliability of autonomous vehicles perception subsystems are paramount for safe and efficient operation. While current studies employ different metrics to evaluate perception subsystem failures in autonomous vehicles, there still exists a gap in the development and emphasis on engineering requirements. To address this gap, this study proposes the establishment of engineering requirements that specifically target real-world hazards and resilience factors important to AV operation, using High-Definition Maps, Global Navigation Satellite System, and weather sensors. The findings include the need for engineering requirements to establish clear criteria for a high-definition maps functionality in the presence of erroneous perception subsystem inputs which enhances the overall safety and reliability of the autonomous vehicles.
Technical Paper

Extended Deep Learning Model to Predict the Electric Vehicle Motor Operating Point

2024-04-09
2024-01-2551
The transition from combustion engines to electric propulsion is accelerating in every coordinate of the globe. The engineers had strived hard to augment the engine performance for more than eight decades, and a similar challenge had emerged again for electric vehicles. To analyze the performance of the engine, the vector engine operating point (EOP) is defined, which is common industry practice, and the performance vector electric vehicle motor operating point (EVMOP) is not explored in the existing literature. In an analogous sense, electric vehicles are embedded with three primary components, e.g., Battery, Inverter, Motor, and in this article, the EVMOP is defined using the parameters [motor torque, motor speed, motor current]. As a second aspect of this research, deep learning models are developed to predict the EVMOP by mapping the parameters representing the dynamic state of the system in real-time.
Technical Paper

Comprehensive Evaluation of Behavioral Competence of an Automated Vehicle Using the Driving Assessment (DA) Methodology

2024-04-09
2024-01-2642
With the development of vehicles equipped with automated driving systems, the need for systematic evaluation of AV performance has grown increasingly imperative. According to ISO 34502, one of the safety test objectives is to learn the minimum performance levels required for diverse scenarios. To address this need, this paper combines two essential methodologies - scenario-based testing procedures and scoring systems - to systematically evaluate the behavioral competence of AVs. In this study, we conduct comprehensive testing across diverse scenarios within a simulator environment following Mcity AV Driver Licensing Test procedure. These scenarios span several common real-world driving situations, including BV Cut-in, BV Lane Departure into VUT Path from Opposite Direction, BV Left Turn Across VUT Path, and BV Right Turn into VUT Path scenarios.
Research Report

Implications of Off-road Automation for On-road Automated Driving Systems

2023-12-12
EPR2023029
Automated vehicles, in the form we see today, started off-road. Ideas, technologies, and engineers came from agriculture, aerospace, and other off-road domains. While there are cases when only on-road experience will provide the necessary learning to advance automated driving systems, there is much relevant activity in off-road domains that receives less attention. Implications of Off-road Automation for On-road Automated Driving Systems argues that one way to accelerate on-road ADS development is to look at similar experiences off-road. There are plenty of people who see this connection, but there is no formalized system for exchanging knowledge. Click here to access the full SAE EDGETM Research Report portfolio.
Technical Paper

Simulation and On-Road Testing of VTS on a Heavy Duty Diesel Engine Truck

2023-10-31
2023-01-1672
Estimated engine torque is an important parameter used by automotive systems for automated transmission and clutch control. Heavy-duty engine and transmission manufacturers widely use SAE J -1939 based ECU torque calculation based on mass air/fuel flow steady state maps created during calibration of the engine for this purpose. As an alternative, to enhance the accuracy of this important control variable, a virtual flywheel torque sensor (VFTS) was developed. It measures the engine torque based on the harmonics of the instantaneous flywheel speed signal. Initial dynamometer testing showed the VFTS estimated torque values exhibited a maximum inaccuracy of 12% of the actual measured torque over the range of conditions tested. In this paper we report the results of on road truck testing of the VFTS. A loaded heavy truck with a gross vehicle weight rating of 80,000 pounds was used.
Technical Paper

Vehicle Lateral Offset Estimation Using Infrastructure Information for Reduced Compute Load

2023-04-11
2023-01-0800
Accurate perception of the driving environment and a highly accurate position of the vehicle are paramount to safe Autonomous Vehicle (AV) operation. AVs gather data about the environment using various sensors. For a robust perception and localization system, incoming data from multiple sensors is usually fused together using advanced computational algorithms, which historically requires a high-compute load. To reduce AV compute load and its negative effects on vehicle energy efficiency, we propose a new infrastructure information source (IIS) to provide environmental data to the AV. The new energy–efficient IIS, chip–enabled raised pavement markers are mounted along road lane lines and are able to communicate a unique identifier and their global navigation satellite system position to the AV. This new IIS is incorporated into an energy efficient sensor fusion strategy that combines its information with that from traditional sensor.
Technical Paper

Effective Second Moment of Load Path (ESMLP) Method for Multiaxial Fatigue Damage and Life Assessment

2023-04-11
2023-01-0724
Time-domain and frequency domain methods are two common methods for fatigue damage and life assessment. The frequency domain fatigue assessment methods are becoming increasingly popular recently because of their unique advantages over the traditional time-domain methods. Recently, a series of moment of load path based multiaxial fatigue life assessment approaches have been developed. Among them, the most recently developed effective second moment of load path (ESMLP) approach demonstrates its potentials of conducting fatigue damage and life assessment accurately and efficiently. ESMLP can be used for fatigue analysis even without resorting to cycle counting because of its unique mathematical and physical properties, such as quadratic form in the kernel of the moment integral, rotationally invariant, and being proportional to damage. Developing a better parameter for frequency-domain analysis is the driving force behind the development of ESMLP as a new fatigue damage parameter.
Technical Paper

Projecting Lane Lines from Proxy High-Definition Maps for Automated Vehicle Perception in Road Occlusion Scenarios

2023-04-11
2023-01-0051
Contemporary ADS and ADAS localization technology utilizes real-time perception sensors such as visible light cameras, radar sensors, and lidar sensors, greatly improving transportation safety in sufficiently clear environmental conditions. However, when lane lines are completely occluded, the reliability of on-board automated perception systems breaks down, and vehicle control must be returned to the human driver. This limits the operational design domain of automated vehicles significantly, as occlusion can be caused by shadows, leaves, or snow, which all occur in many regions. High-definition map data, which contains a high level of detail about road features, is an alternative source of the required lane line information. This study details a novel method where high-definition map data are processed to locate fully occluded lane lines, allowing for automated path planning in scenarios where it would otherwise be impossible.
Technical Paper

Road Snow Coverage Estimation Using Camera and Weather Infrastructure Sensor Inputs

2023-04-11
2023-01-0057
Modern vehicles use automated driving assistance systems (ADAS) products to automate certain aspects of driving, which improves operational safety. In the U.S. in 2020, 38,824 fatalities occurred due to automotive accidents, and typically about 25% of these are associated with inclement weather. ADAS features have been shown to reduce potential collisions by up to 21%, thus reducing overall accidents. But ADAS typically utilize camera sensors that rely on lane visibility and the absence of obstructions in order to function, rendering them ineffective in inclement weather. To address this research gap, we propose a new technique to estimate snow coverage so that existing and new ADAS features can be used during inclement weather. In this study, we use a single camera sensor and historical weather data to estimate snow coverage on the road. Camera data was collected over 6 miles of arterial roadways in Kalamazoo, MI.
Technical Paper

An Ultra-Light Heuristic Algorithm for Autonomous Optimal Eco-Driving

2023-04-11
2023-01-0679
Connected autonomy brings with it the means of significantly increasing vehicle Energy Economy (EE) through optimal Eco-Driving control. Much research has been conducted in the area of autonomous Eco-Driving control via various methods. Generally, proposed algorithms fall into the broad categories of rules-based controls, optimal controls, and meta-heuristics. Proposed algorithms also vary in cost function type with the 2-norm of acceleration being common. In a previous study the authors classified and implemented commonly represented methods from the literature using real-world data. Results from the study showed a tradeoff between EE improvement and run-time and that the best overall performers were meta-heuristics. Results also showed that cost functions sensitive to the 1-norm of acceleration led to better performance than those which directly minimize the 2-norm.
Technical Paper

Autonomous Eco-Driving Evaluation of an Electric Vehicle on a Chassis Dynamometer

2023-04-11
2023-01-0715
Connected and Automated Vehicles (CAV) provide new prospects for energy-efficient driving due to their improved information accessibility, enhanced processing capacity, and precise control. The idea of the Eco-Driving (ED) control problem is to perform energy-efficient speed planning for a connected and automated vehicle using data obtained from high-resolution maps and Vehicle-to-Everything (V2X) communication. With the recent goal of commercialization of autonomous vehicle technology, more research has been done to the investigation of autonomous eco-driving control. Previous research for autonomous eco-driving control has shown that energy efficiency improvements can be achieved by using optimization techniques. Most of these studies are conducted through simulations, but many more physical vehicle integrated test application studies are needed.
X