Refine Your Search

Topic

Search Results

Technical Paper

Low Cost Reconfigurable Jig Tooling and In-Process Metrology for High Accuracy Prototype Rotorcraft Wing Assembly

2019-09-16
2019-01-1877
Reconfigurable tooling frames consisting of steel box sections and bolted friction clamps offer an opportunity to replace traditional expensive welded steel tooling. This well publicized reconfigurable reusable jig tooling has been investigated for use in the assembly of a prototype compound helicopter wing. Due to the aircraft configuration, the wing design is pinned at both ends and therefore requires a higher degree of end to end accuracy, over the 4m length, than conventional wings. During the investigation some fundamental issues are approached, including: Potential cost savings and variables which effect the business case. Achievable Jig accuracy. Potential sources of instability that may affect accuracy over time. Repeatability of measurements with various features and methods. Typical jig stability over 24hrs including effects of small temperature fluctuations. Deflections that occur due to loading.
Technical Paper

Morphological Characterization of Gasoline Soot-in-Oil: Development of Semi-Automated 2D-TEM and Comparison with Novel High-Throughput 3D-TEM

2019-09-09
2019-24-0042
Characterization of soot nanoparticle morphology can be used to develop understanding of nanoparticle interaction with engine lubricant oil and its additives. It can be used to help direct modelling of soot-induced thickening, and in a more general sense for combatting reductions in engine efficiency that occur with soot-laden oils. Traditional 2D transmission electron microscopy (TEM) characterization possesses several important shortcomings related to accuracy that have prompted development of an alternative 3D characterization technique utilizing electron tomography, known as 3D-TEM. This work details progress made towards facilitating semi-automated image acquisition and processing for location of structures of interest on the TEM grid. Samples were taken from a four cylinder 1.4 L gasoline turbocharged direct injection (GTDI) engine operated in typically extra-urban driving conditions for 20,284 km, with automatic cylinder deactivation enabled.
Technical Paper

Potential Improvements in Turbofan’s Performance by Electric Power Transfer

2018-10-30
2018-01-1962
Bleeding in engines is essential to mitigate the unmatched air massflow between low and High Pressure (HP) compressors at low speed settings, thus avoiding unstable operation due to surge and phenomena. However, by emerging the More Electric Aircraft (MEA) the engine is equipped with electrical machines on both high and Low Pressure (LP) spools which enables transfer of power electrically from one spool to another and hence provides the opportunity to operate engine core components closer to their optimum design point at off-design conditions. At lower power setting of the engine, HPC speed can be increased by taking power from LP shaft and feeding it to HP shaft which can lead to the removal of the bleeding system which in turn reduces weight and fuel consumption and help to overcome engine instability issues. Fuel consumption can be decreased by decreasing inconsistent thrust with the aircraft mission for flight and ground idle settings.
Journal Article

The Effects of Cylinder Deactivation on the Thermal Behaviour and Performance of a Three Cylinder Spark Ignition Engine

2016-10-17
2016-01-2160
A physics based, lumped thermal capacity model of a 1litre, 3 cylinder, turbocharged, directly injected spark ignition engine has been developed to investigate the effects of cylinder deactivation on the thermal behaviour and fuel economy of small capacity, 3 cylinder engines. When one is deactivated, the output of the two firing cylinders is increased by 50%. The largest temperature differences resulting from this are between exhaust ports and between the upper parts of liners of the deactivated cylinder and the adjacent firing cylinder. These differences increase with load. The deactivated cylinder liner cools to near-coolant temperature. Temperatures in the lower engine structure show little response to deactivation. Temperature response times following deactivation or reactivation events are similar. Motoring work for the deactivated cylinder is a minor loss; the net benefit of deactivation diminishes with increasing load.
Technical Paper

Design of a Reconfigurable Assembly Cell for Multiple Aerostructures

2016-09-27
2016-01-2105
This paper presents novel development of a reconfigurable assembly cell which assembles multiple aerostructure products. Most aerostructure assembly systems are designed to produce one variant only. For multiple variants, each assembly typically has a dedicated assembly cell, despite most assemblies requiring a process of drilling and fastening to similar tolerances. Assembly systems that produce more than one variant do exist but have long changeover or involve extensive retrofitting. Quick assembly of multiple products using one assembly system offers significant cost savings from reductions in capital expenditure and lead time. Recent trends advocate Reconfigurable Assembly Systems (RAS) as a solution; designed to have exactly the functionality necessary to produce a group of similar components. A state-of-the-art review finds significant benefits in deploying RAS for a group of aerostructures variants.
Technical Paper

A Modified Oil Lubrication System with Flow Control to Reduce Crankshaft Bearing Friction in a Litre 4 Cylinder Diesel Engine

2016-04-05
2016-01-1045
The oil distribution system of an automotive light duty engine typically has an oil pump mechanically driven through the front-endancillaries-drive or directly off the crankshaft. Delivery pressure is regulated by a relief valve to provide an oil gallery pressure of typically 3 to 4 bar absolute at fully-warm engine running conditions. Electrification of the oil pump drive is one way to decouple pump delivery from engine speed, but this does not alter the flow distribution between parts of the engine requiring lubrication. Here, the behaviour and benefits of a system with an electrically driven, fixed displacement pump and a distributor providing control over flow to crankshaft main bearings and big end bearings is examined. The aim has been to demonstrate that by controlling flow to these bearings, without changing flow to other parts of the engine, significant reductions in engine friction can be achieved.
Technical Paper

The Role of New Automotive Engineering Masters Programme in the Industry in China

2016-04-05
2016-01-0171
China is the world’s largest automotive producer and has the world’s biggest automobile market. However, in the past decades, the development of China’s automotive industry has depended primarily on the foreign direct investment; domestic automakers have struggled in the lower ranks of car producers. In recent years, China’s automotive industry, supported by government policies, has been improving their Research and Development (R&D) capacity, to compete with their international peers. Against this background, China’s automotive industry requires a large number of R&D professionals who have not only a higher degree but also the applied and practical knowledge and skills of research. For the purpose of meeting the industry’s needs, a new Professional Automotive Engineering Masters Programme was launched in 2009, which aims to deliver the Masters to be the R&D professionals in the future.
Journal Article

Technology Review of Thermal Forming Techniques for use in Composite Component Manufacture

2015-09-15
2015-01-2610
There is a growing demand for composites to be utilised in the production of large-scale components within the aerospace industry. In particular the demand to increase production rates indicates that traditional manual methods are no longer sufficient, and automated solutions must be sought. This typically leads to automated forming processes where there are a limited number of effective options. The need for forming typically arises from the inability of layup methods to produce complex geometries of structural components. This paper reviews the current state of the art in automated forming processes, their limitations and variables that affect performance in the production of large scale components. In particular the paper will focus on the application of force and heat within secondary forming processes. It will then review the effects of these variables against the structure of the required composite component and identify viability of the technology.
Journal Article

Axiomatic Design of a Reconfigurable Assembly System for Primary Wing Structures

2014-09-16
2014-01-2249
Aerospace assembly systems comprise a vast array of interrelated elements interacting in a myriad of ways. Consequently, aerospace assembly system design is a deeply complex process that requires a multi-disciplined team of engineers. Recent trends to improve manufacturing agility suggest reconfigurability as a solution to the increasing demand for improved flexibility, time-to-market and overall reduction in non-recurring costs. Yet, adding reconfigurability to assembly systems further increases operational complexity and design complexity. Despite the increase in complexity for reconfigurable assembly, few formal methodologies or frameworks exist specifically to support the design of Reconfigurable Assembly Systems (RAS). This paper presents a novel reconfigurable assembly system design framework (RASDF) that can be applied to wing structure assembly as well as many other RAS design problems.
Technical Paper

Design and Modeling of a 45kW, Switched Reluctance Starter-Generator for a Regional Jet Application

2014-09-16
2014-01-2158
A 45kW, switched reluctance type, starter-generator, having a 1:4 constant power speed range has been designed as a possible candidate for a regional jet application. In the first section of this paper, a review of the major starter-generator topologies considered for the aerospace application is provided, highlighting the advantages of choosing the Switched reluctance topology for such a safety critical application. Following this, the required torque speed characteristic of the machine, along with the imposed physical constraints, in terms of cooling and outer dimensions, are also detailed. Section III provides a description of the Electromagnetic design, and challenges encountered in meeting both the low speed, peak torque node, at 8000rpm, and the high speed, high power node, at 32000rpm. The induced mechanical stresses in the rotor at such high speeds have also been evaluated and used as a material selection criterion for such a design as presented in section III.
Technical Paper

Information on the Aromatic Structure of Internal Diesel Injector Deposits From Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS)

2014-04-01
2014-01-1387
The nature of internal diesel injector deposits (IDID) continues to be of importance to the industry, with field problems such as injector sticking, loss of power, increased emissions and fuel consumption being found. The deposits have their origins in the changes in emission regulations that have seen increasingly severe conditions experienced by fuels because of high temperatures and high pressures of modern common rail systems and the introduction of low sulphur fuels. Furthermore, the effect of these deposits is amplified by the tight engineering tolerances of the moving parts of such systems. The nature and thus understanding of such deposits is necessary to both minimising their formation and the development of effective diesel deposit control additives (DCA).
Journal Article

Emerging Technologies for Use in Aerospace Bonded Assemblies

2013-09-17
2013-01-2134
Several new technologies are now emerging to improve adhesive supply and formulation along with surface treatments that have the potential to offer significant improvements to both surface energy and cleanliness [3]. Additionally, the miniaturisation of laboratory techniques into portable equipment offers potential for online surface energy and chemical analysis measurement for use as quality control measures in a production environment. An overview of newly available technology is given here with several devices studied in further detail. Technologies assessed further in this paper are; portable surface contact angle measurement, ambient pressure plasma cleaning, portable FTIR measurement and adhesive mixing equipment. A number of potential applications are outlined for each device based on the operational technique. The practical aspects of implementation and the perceived technology readiness levels for operation, implementation and results are also given.
Technical Paper

Review of Reconfigurable Assembly Systems Technologies for Cost Effective Wing Structure Assembly

2013-09-17
2013-01-2336
Airbus commercial wings are assembled manually in dedicated steel structures. The lead time to design, manufacture and commission these fixtures is often in excess of 24 months. Due to the nature of these fixtures, manufacturing is slow in responding to changes in demand. There is underused capacity in some areas and insufficient ramp-up speed where increased production rate is needed. Reconfigurable Manufacturing Systems and Reconfigurable Assembly Systems (RAS) provide an approach to system design that provides appropriate capacity when needed. The aim of the paper is to review RAS technologies that are suitable for cost-effective wing structure assembly and what knowledge gaps exist for a RAS to be achieved. The paper examines successful cases of RAS and reviews relevant system design approaches. Cost savings are acknowledged and tabularised where demonstrated in research. The research gaps to realising a RAS for wing assembly are identified and different approaches are considered.
Journal Article

Improvement of Planning and Tracking of Technology Maturity Development with Focus on Manufacturing Requirements

2013-09-17
2013-01-2261
This paper details the development of a user-friendly computerised tool created to evaluate the Manufacturing Readiness Levels (MRL) of an emerging technology. The main benefits achieved are to manage technology development planning and tracking, make visually clear and standardised analysis, and improve team communication. The new approach is applied to the Technology Readiness Levels (TRL), currently used by Airbus Research & Technology (R&T) UK. The main focus is on the improvement of the analysis criteria. The first phase of the study was to interpret the manufacturing criteria used by Airbus at TRL 4, including a brief benchmarking review of similar practices in industry and other Airbus' project management tools. All information gathered contributed to the creation of a complete set of criteria.
Journal Article

A Novel Technique for Investigating the Characteristics and History of Deposits Formed Within High Pressure Fuel Injection Equipment

2012-09-10
2012-01-1685
The recent developments in diesel fuel injection equipment coupled with the moves in the US to using ULSD and biodiesel blends has seen an increase in the number of reports from both engine manufacturers and fleet operators regarding fuel system deposit formation issues. These deposits not only form on and within the fuel injectors but they also form elsewhere in the fuel system, due to fuel recirculation. These will eventually accumulate in the fuel filters. Historically, diesel fuel system deposits have been attributed to contamination of the fuel or the degradation of the fuel with age. Such age related degradation has been attributed to oxidation of the fuel via well documented pathways, although the initiation of this process is still poorly understood. Papers at recent SAE meetings in Florence, San Antonio, Rio de Janeiro, San Diego and Kyoto have addressed many of these causes.
Technical Paper

Predicted Paths of Soot Particles in the Cylinders of a Direct Injection Diesel Engine

2012-04-16
2012-01-0148
Soot formation and distribution inside the cylinder of a light-duty direct injection diesel engine, have been predicted using Kiva-3v CFD software. Pathlines of soot particles traced from specific in-cylinder locations and crank angle instants have been explored using the results for cylinder charge motion predicted by the Kiva-3v code. Pathlines are determined assuming soot particles are massless and follow charge motion. Coagulation and agglomeration have not been taken into account. High rates of soot formation dominate during and just after the injection. Oxidation becomes dominant after the injection has terminated and throughout the power stroke. Computed soot pathlines show that soot particles formed just below the fuel spray axis during the early injection period are more likely to travel to the cylinder wall boundary layer. Soot particles above the fuel spray have lesser tendency to be conveyed to the cylinder wall.
Technical Paper

The Influence of Compression Ratio on Indicated Emissions and Fuel Economy Responses to Input Variables for a D.I Diesel Engine Combustion System

2012-04-16
2012-01-0697
The effect of compression ratio on sensitivity to changes in start of injection and air-fuel ratio has been investigated on a single-cylinder DI diesel engine at fixed low and medium speeds and loads. Compression ratio was set to 17.9:1 or 13.7:1 by using pistons with different bowl sizes. Injection timing and air-to-fuel ratio were swept around a nominal map point at which gross IMEP and NOx values were matched for the two compression ratios. It was found that CO, HC and ISFC were higher at low compression ratio, but the soot/NOx trade-off improved and this could be exploited to reduce the fuel economy penalty. Sensitivity to inputs is generally similar, but high compression ratio tended to have steeper response gradients. Reducing compression ratio to 13.7 gave rise to a marked degradation of performance at light load, producing high CO emissions and a fall in combustion efficiency. This could be eased by reducing rail pressure, but the advantage in smoke emission was lost.
Technical Paper

A New Floating-Liner Test Rig Design to Investigate Factors Influencing Piston-Liner Friction

2012-04-16
2012-01-1328
The largest contribution to engine rubbing friction is made by the piston and piston rings running in the cylinder liner. The magnitude and characteristics of the friction behaviour and the influence on these of factors such as surface roughness, piston design and lubricant properties are of keen interest. Investigating presents experimental challenges, including potential problems of uncontrolled build-to-build variability when component changes are made. These are addressed in the design of a new motored piston and floating liner rig. The design constrains transverse movement of a single liner using cantilevered mounts at the top and bottom. The mounts and two high stiffness strain gauged load cells constrain vertical movement. The outputs of the load cells are processed to extract the force contribution associated with friction. The liner, piston and crankshaft parts were taken from a EuroV-compliant, HPCR diesel engine with a swept capacity of 550cc per cylinder.
Journal Article

The Potential for Fibre Alignment in the Manufacture of Polymer Composites from Recycled Carbon Fibre

2009-11-10
2009-01-3237
This paper studies the feasibility and potential benefits of aligning recycled carbon fibres, in the form of short individual filaments, to manufacture fibre reinforced polymer composites. A review of fibre alignment processes is presented to provide insight into the different alignment technologies. The main focus is on wet hydrodynamic processes, which offer a high degree of alignment for discontinuous fibres. The process parameters that govern the alignment efficiency are also reported. The effect of alignment on fibre packing efficiency in the manufacture of composites is included, together with a report of preliminary fibre alignment results obtained from three different alignment processes.
Technical Paper

Natural and Environmentally Responsive Building Envelopes

2007-07-09
2007-01-3056
In a context of global warming and our needs to reduce CO2 emissions, building envelopes will play an important role. A new imperative has been put forth to architects and engineers to develop innovative materials, components and systems, in order to make building envelopes adaptive and responsive to variable and extreme climate conditions. Envelopes serve multiple functions, from shielding the interior environment to collecting, storing and generating energy. Perhaps a more recent concern of terrestrial habitats is permeability and leakages within the building envelope. Such air tight and concealed envelopes with zero particle exchange are a necessity and already exist in regard to space capsules and habitats. This paper attempts to acknowledge existing and visionary envelope concepts and their functioning in conjunction with maintaining a favourable interior environment. It introduces several criteria and requirements of advanced façades along with interior pressurization control.
X