Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Integrated Design of Motor Drives Using Random Heuristic Optimization for Aerospace Applications

2017-09-19
2017-01-2030
High power density for aerospace motor drives is a key factor in the successful realization of the More Electric Aircraft (MEA) concept. An integrated system design approach offers optimization opportunities, which could lead to further improvements in power density. However this requires multi-disciplinary modelling and the handling of a complex optimization problem that is discrete and nonlinear in nature. This paper proposes a multi-level approach towards applying random heuristic optimization to the integrated motor design problem. Integrated optimizations are performed independently and sequentially at different levels assigned according to the 4-level modelling paradigm for electric systems. This paper also details a motor drive sizing procedure, which poses as the optimization problem to solve here. Finally, results comparing the proposed multi-level approach with a more traditional single-level approach is presented for a 2.5 kW actuator motor drive design.
Technical Paper

An Enhanced Secondary Control Approach for Voltage Restoration in the DC Distribution System

2016-09-20
2016-01-1985
The paper will deal with the problem of establishing a desirable power sharing in multi-feed electric power system for future more-electric aircraft (MEA) platforms. The MEA is one of the major trends in modern aerospace engineering aiming for reduction of the overall aircraft weight, operation cost and environmental impact. Electrical systems are employed to replace existing hydraulic, pneumatic and mechanical loads. Hence the onboard installed electrical power increases significantly and this results in challenges in the design of electrical power systems (EPS). One of the key paradigms for future MEA EPS architectures assumes high-voltage dc distribution with multiple sources, possibly of different physical nature, feeding the same bus(es). In our study we investigate control approaches to guarantee that the total electric load is shared between the sources in a desirable manner. A novel communication channel based secondary control method is proposed in this paper.
Technical Paper

Impact of Electric Loads on Engine Shaft Dynamics within More Electric Aircraft

2015-09-15
2015-01-2409
This paper considers the electromechanical interconnection between the electrical power system of the More Electric Aircraft (MEA) and the shaft connecting the engine to the generator. In order to investigate the coupling between these two systems the effect of an electric load impact on the mechanical system of the MEA will be analysed. In the MEA, many functions traditionally powered by pneumatic, hydraulic and mechanical systems will be replaced by the electrical systems. Thus the electrical power rating will be considerably higher than that of a traditional aircraft. With the increase of electrical power, the impact of electrical load on the mechanical system, especially the engine shaft, will become significant. This paper focuses on the study of the interaction between the electrical and mechanical system.
X