Refine Your Search

Topic

Author

Search Results

Technical Paper

Impact of Soft Magnetic Ageing on the Performance of Aerospace Propulsion Machines

2022-03-08
2022-01-0050
Electric machines in aerospace applications are subjected to extremely high operating temperatures. This increases coercivity or decreases saturation flux density of the electrical steel resulting in increased core loss. The need for high power density and increased operating speed favours the use of thin gauge Silicon Steel (Si-Fe) and Cobalt Iron (Co-Fe) laminations for aerospace applications. Therefore, the variation in iron loss is studied for three grades of Si-Fe laminations by subjecting them to controlled ageing in laboratory. The analysis is also provided over a range of flux density and frequency to generalize the phenomenon over the operating domain. The results of ageing the laminations are in turn used to predict the degradation in performance of a 1.15 MW, 16-pole 48-slot propulsion machine for aerospace application. The degradation is estimated in terms of variation in iron loss.
Journal Article

Internal Diesel Injector Deposit Chemical Speciation and Quantification Using 3D OrbiSIMS and XPS Depth Profiling

2020-09-15
2020-01-2098
The impact of internal diesel injector deposits (IDIDs) on engine performance, efficiency and emissions remains a major concern in the automotive industry. This has been compounded in recent years by fuel injection equipment developments and changes to diesel fuel towards ultra-low sulfur diesel (ULSD) and biodiesel as well as the introduction of new fuels such as hydrotreated vegetable oil (HVO). Prevention and mitigation of such deposit formation requires an understanding of the formation process, which demands a chemical explanation. The chemistry of these deposits therefore remains a key research interest to the industry using the latest analytical methodologies to inform and build further on previous investigations.
Technical Paper

Brake Power Availability Led Optimisation of P0 versus P2 48V Hybrid Powertrain Architectures

2020-04-14
2020-01-0439
Through improving the 48V hybrid vehicle archetype, governmental emission targets could be more easily met without incurring the high costs associated with increasing levels of electrification. The braking energy recovery function of hybrid vehicles is recognised as an effective solution to reduce emissions and fuel consumption in the short to medium term. The aim of this study was to evaluate methods to maximise the braking energy recovery capability of the 48V hybrid electric vehicle over pre-selected drive cycles using appropriately sized electrified components. The strategy adopted was based upon optimising the battery chemistry type via specific power capability, so that overall brake power is equal to the maximum battery charging power in a typical medium-sized passenger car under typical driving. This will maximise the regenerative braking energy whilst providing a larger torque assistance for a lower battery capacity.
Technical Paper

Low Cost Reconfigurable Jig Tooling and In-Process Metrology for High Accuracy Prototype Rotorcraft Wing Assembly

2019-09-16
2019-01-1877
Reconfigurable tooling frames consisting of steel box sections and bolted friction clamps offer an opportunity to replace traditional expensive welded steel tooling. This well publicized reconfigurable reusable jig tooling has been investigated for use in the assembly of a prototype compound helicopter wing. Due to the aircraft configuration, the wing design is pinned at both ends and therefore requires a higher degree of end to end accuracy, over the 4m length, than conventional wings. During the investigation some fundamental issues are approached, including: Potential cost savings and variables which effect the business case. Achievable Jig accuracy. Potential sources of instability that may affect accuracy over time. Repeatability of measurements with various features and methods. Typical jig stability over 24hrs including effects of small temperature fluctuations. Deflections that occur due to loading.
Technical Paper

Advanced Assembly Solutions for the Airbus RACER Joined-Wing Configuration

2019-09-16
2019-01-1884
The Rapid And Cost Effective Rotorcraft (RACER) is being developed by Airbus Helicopters (AH) to demonstrate a new Vertical Take-Off and Landing configuration to fill the mobility gap between conventional helicopters and aeroplanes. RACER is a compound rotorcraft featuring wings and multiple rotors. The wing arrangement suggested by AH is defined as a staggered bi-plane joined configuration with an upper and a lower straight wing, either side of the fuselage, connected at their outboard extent to form a triangular structure. The ASTRAL consortium, consisting of the University of Nottingham and GE Aviation Systems, are responsible for the design, manufacture, assembly and testing of the wings. Producing an optimised strategy to assemble a joined-wing configuration for a passenger carrying rotorcraft is challenging and novel. The objective of this work concerns all aspects of assembling the joined-wing structure.
Technical Paper

Demonstration of Transformable Manufacturing Systems through the Evolvable Assembly Systems Project

2019-03-19
2019-01-1363
Evolvable Assembly Systems is a five year UK research council funded project into flexible and reconfigurable manufacturing systems. The principal goal of the research programme has been to define and validate the vision and support architecture, theoretical models, methods and algorithms for Evolvable Assembly Systems as a new platform for open, adaptable, context-aware and cost effective production. The project is now coming to a close; the concepts developed during the project have been implemented on a variety of demonstrators across a number of manufacturing domains including automotive and aerospace assembly. This paper will show the progression of demonstrators and applications as they increase in complexity, specifically focussing on the Future Automated Aerospace Assembly Phase 1 technology demonstrator (FA3D).
Technical Paper

Transient Stability Analysis of DC Solid State Power Controller (SSPC) for More Electric Aircraft

2018-10-30
2018-01-1927
The solid state power controller (SSPC) is one of the most important power electronic components of the aircraft electrical power distribution (EPS) systems. This paper presents an architecture of the DC SSPC and provides the mitigation techniques for transient voltage overshoot during its turn-off. The high source side inductance carries breaking current (9xnominal current) just before turnoff and induces large voltage transient across the semiconductor devices. Therefore, the stored inductive energy needs to be dissipated in order to prevent semiconductor switches from over-voltage/thermal breakdown. Three different transient voltage suppression (TVS) devices to reduce voltage stress across switches are included in the paper for detail study. The comprehensive comparison of the TVS devices is presented. In addition, the thermal impact of the TVS devices on the semiconductor switches is also analyzed.
Technical Paper

Integrated Design of Motor Drives Using Random Heuristic Optimization for Aerospace Applications

2017-09-19
2017-01-2030
High power density for aerospace motor drives is a key factor in the successful realization of the More Electric Aircraft (MEA) concept. An integrated system design approach offers optimization opportunities, which could lead to further improvements in power density. However this requires multi-disciplinary modelling and the handling of a complex optimization problem that is discrete and nonlinear in nature. This paper proposes a multi-level approach towards applying random heuristic optimization to the integrated motor design problem. Integrated optimizations are performed independently and sequentially at different levels assigned according to the 4-level modelling paradigm for electric systems. This paper also details a motor drive sizing procedure, which poses as the optimization problem to solve here. Finally, results comparing the proposed multi-level approach with a more traditional single-level approach is presented for a 2.5 kW actuator motor drive design.
Technical Paper

Design of a Reconfigurable Assembly Cell for Multiple Aerostructures

2016-09-27
2016-01-2105
This paper presents novel development of a reconfigurable assembly cell which assembles multiple aerostructure products. Most aerostructure assembly systems are designed to produce one variant only. For multiple variants, each assembly typically has a dedicated assembly cell, despite most assemblies requiring a process of drilling and fastening to similar tolerances. Assembly systems that produce more than one variant do exist but have long changeover or involve extensive retrofitting. Quick assembly of multiple products using one assembly system offers significant cost savings from reductions in capital expenditure and lead time. Recent trends advocate Reconfigurable Assembly Systems (RAS) as a solution; designed to have exactly the functionality necessary to produce a group of similar components. A state-of-the-art review finds significant benefits in deploying RAS for a group of aerostructures variants.
Technical Paper

Variation Aware Assembly Systems for Aircraft Wings

2016-09-27
2016-01-2106
Aircraft manufacturers desire to increase production to keep up with anticipated demand. To achieve this, the aerospace industry requires a significant increase in the manufacturing and assembly performance to reach required output levels. This work therefore introduces the Variation Aware Assembly (VAA) concept and identifies its suitability for implementation into aircraft wing assembly processes. The VAA system concept focuses on achieving assemblies towards the nominal dimensions, as opposed to traditional tooling methods that aim to achieve assemblies anywhere within the tolerance band. It enables control of the variation found in Key Characteristics (KC) that will allow for an increase in the assembly quality and product performance. The concept consists of utilizing metrology data from sources both before and during the assembly process, to precisely position parts using motion controllers.
Technical Paper

An Enhanced Secondary Control Approach for Voltage Restoration in the DC Distribution System

2016-09-20
2016-01-1985
The paper will deal with the problem of establishing a desirable power sharing in multi-feed electric power system for future more-electric aircraft (MEA) platforms. The MEA is one of the major trends in modern aerospace engineering aiming for reduction of the overall aircraft weight, operation cost and environmental impact. Electrical systems are employed to replace existing hydraulic, pneumatic and mechanical loads. Hence the onboard installed electrical power increases significantly and this results in challenges in the design of electrical power systems (EPS). One of the key paradigms for future MEA EPS architectures assumes high-voltage dc distribution with multiple sources, possibly of different physical nature, feeding the same bus(es). In our study we investigate control approaches to guarantee that the total electric load is shared between the sources in a desirable manner. A novel communication channel based secondary control method is proposed in this paper.
Journal Article

Reconfigurable Assembly System Design Methodology: A Wing Assembly Case Study

2015-09-15
2015-01-2594
Current assembly systems that deal with large, complex structures present a number of challenges with regard to improving operational performance. Specifically, aerospace assembly systems comprise a vast array of interrelated elements interacting in a myriad of ways, resulting in a deeply complex process that requires a multi-disciplined team of engineers. The current approach to ramp-up production rate involves building additional main assembly fixtures which require large investment and lead times up to 24 months. Within Airbus Operations Ltd there is a requirement to improve the capacity and flexibility of assembly systems, thereby reducing non-recurring costs and time-to-market. Recent trends to improve manufacturing agility advocate Reconfigurable Assembly Systems (RAS) as a viable solution. Yet, adding reconfigurability to assembly systems further increases both the operational and design complexity.
Journal Article

Structural Quality Inspection Based on a RGB-D Sensor: Supporting Manual-to-Automated Assembly Operations

2015-09-15
2015-01-2499
The assembly and manufacture of aerospace structures, in particular legacy products, relies in many cases on the skill, or rather the craftsmanship, of a human operator. Compounded by low volume rates, the implementation of a fully automated production facility may not be cost effective. A more efficient solution may be a mixture of both manual and automated operations but herein lies an issue of human error when stepping through the build from a manual operation to an automated one. Hence the requirement for an advanced automated assembly system to contain functionality for inline structural quality checking. Machine vision, used most extensively in manufacturing, is an obvious choice, but existing solutions tend to be application specific with a closed software development architecture.
Technical Paper

Towards Self-Adaptive Fixturing Systems for Aircraft Wing Assembly

2015-09-15
2015-01-2493
The aim of this work was to develop a new assembly process in conjunction with an adaptive fixturing system to improve the assembly process capability of specific aircraft wing assembly processes. The inherently complex aerospace industry requires a step change in its capability to achieve the production ramp up required to meet the global demand. This paper evaluates the capability of adaptive fixtures to identify their suitability for implementation into aircraft wing manufacturing and assembly. To understand the potential benefits of these fixtures, an examination of the current academic practices and an evaluation of the existing industrial solutions is highlighted. The proposed adaptive assembly process was developed to account for the manufacturing induced dimensional variation that causes significant issues in aircraft wing assembly. To test the effectiveness of the adaptive assembly process, an aircraft wing assembly operation was replicated on a demonstrator test rig.
Technical Paper

Impact of Electric Loads on Engine Shaft Dynamics within More Electric Aircraft

2015-09-15
2015-01-2409
This paper considers the electromechanical interconnection between the electrical power system of the More Electric Aircraft (MEA) and the shaft connecting the engine to the generator. In order to investigate the coupling between these two systems the effect of an electric load impact on the mechanical system of the MEA will be analysed. In the MEA, many functions traditionally powered by pneumatic, hydraulic and mechanical systems will be replaced by the electrical systems. Thus the electrical power rating will be considerably higher than that of a traditional aircraft. With the increase of electrical power, the impact of electrical load on the mechanical system, especially the engine shaft, will become significant. This paper focuses on the study of the interaction between the electrical and mechanical system.
Technical Paper

Functional Modeling of 18-Pulse Autotransformer Rectifier Units for Aircraft Applications

2015-09-15
2015-01-2412
This paper aims to develop a general functional model of multi-pulse Auto-Transformer Rectifier Units (ATRUs) for More-Electric Aircraft (MEA) applications. The ATRU is seen as the most reliable way readily to be applied in the MEA. Interestingly, there is no model of ATRUs suitable for unbalanced or faulty conditions at the moment. This paper is aimed to fill this gap and develop functional models suitable for both balanced and unbalanced conditions. Using the fact that the DC voltage and current are strongly related to the voltage and current vectors at the AC terminals of ATRUs, a generic functional model has been developed for both symmetric and asymmetric ATRUs. The developed functional models are validated through simulation and experiment. The efficiency of the developed model is also demonstrated by comparing with corresponding detailed switching models. The developed functional model shows significant improvement of simulation efficiency, especially under balanced conditions.
Technical Paper

Light Weight Aerospace Assembly Fixture

2015-09-15
2015-01-2496
There is the need to strive towards more advanced aircraft with the use of materials such as composites, and a desire to improve efficiency by achieving and maintaining laminar flow over a large proportion of the aircraft wing. Due to the high tolerances required to achieve laminar flow, the manufacturing processes and tooling will have to be revaluated to enable successful manufacture in a production environment. A major influence in achieving the key characteristics and tolerances is the assembly fixture. This paper details the design and manufacture of a carbon fibre based assembly fixture, required for a one-off build of an innovative leading edge wing concept. The fixture has been designed and optimised in order to make it adaptable, reconfigurable, and suitable for lifting as well as being thermally stable whilst maintaining laminar flow tolerances.
Technical Paper

CFD Investigation on the Influence of In-Cylinder Mixture Distribution from Multiple Pilot Injections on Cold Idle Behaviour of a Light Duty Diesel Engine

2014-10-13
2014-01-2708
Cold idle operation of a modern design light duty diesel engine and the effect of multiple pilot injections on stability were investigated. The investigation was initially carried out experimentally at 1000rpm and at −20°C. Benefits of mixture preparation were initially explored by a heat release analysis. Kiva 3v was then used to model the effect of multiple pilots on in-cylinder mixture distribution. A 60° sector of mesh was used taking advantage of rotational symmetry. The combustion system and injector arrangements mimic the HPCR diesel engine used in the experimental investigation. The CFD analysis covers evolutions from intake valve closing to start of combustion. The number of injections was varied from 1 to 4, but the total fuel injected was kept constant at 17mm3/stroke. Start of main injection timing was fixed at 7.5°BTDC.
Journal Article

Implementing Determinate Assembly for the Leading Edge Sub-Assembly of Aircraft Wing Manufacture

2014-09-16
2014-01-2252
The replacement for the current single-aisle aircraft will need to be manufactured at a rate significantly higher that of current production. One way that production rate can be increased is by reducing the processing time for assembly operations. This paper presents research that was applied to the build philosophy of the leading edge of a laminar flow European wing demonstrator. The paper describes the implementation of determinate assembly for the rib to bracket assembly interface. By optimising the diametric and the positional tolerances of the holes on the two bracket types and ribs, determinate assembly was successfully implemented. The bracket to rib interface is now secured with no tooling or post processes other than inserting and tightening the fastener. This will reduce the tooling costs and eliminates the need for local drilling, de-burring and re-assembly of the bracket to rib interface, reducing the cycle time of the operation.
Journal Article

Axiomatic Design of a Reconfigurable Assembly System for Primary Wing Structures

2014-09-16
2014-01-2249
Aerospace assembly systems comprise a vast array of interrelated elements interacting in a myriad of ways. Consequently, aerospace assembly system design is a deeply complex process that requires a multi-disciplined team of engineers. Recent trends to improve manufacturing agility suggest reconfigurability as a solution to the increasing demand for improved flexibility, time-to-market and overall reduction in non-recurring costs. Yet, adding reconfigurability to assembly systems further increases operational complexity and design complexity. Despite the increase in complexity for reconfigurable assembly, few formal methodologies or frameworks exist specifically to support the design of Reconfigurable Assembly Systems (RAS). This paper presents a novel reconfigurable assembly system design framework (RASDF) that can be applied to wing structure assembly as well as many other RAS design problems.
X