Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Ambient Pressure on Ammonia Sprays Using a Single Hole Injector

2024-04-09
2024-01-2618
Ammonia has received attention as an alternative hydrogen carrier and a potential fuel for thermal propulsion systems with a lower carbon footprint. One strategy for high power density in ammonia applications will be direct injection of liquid ammonia. Understanding the evaporation and mixing processes associated with this is important for model development. Additionally, as a prior step for developing new injectors, it is of interest to understand how a conventional gasoline direct injection (GDI) injector would behave when used for liquid ammonia without any modifications. Pure anhydrous ammonia, in its liquid form, was injected from a single hole GDI injector at a fuel pressure of 150 bar into an optically accessible constant volume chamber filled with nitrogen gas for ammonia spray measurements. The chamber conditions spanned a wide range of pressures from 3 − 15 bar at an increment of 1 bar or 2 bar between the test points.
Technical Paper

Comparing Real Driving Emissions from Euro 6d-TEMP Vehicles Running on E0 and E10 Gasoline Blends

2023-10-31
2023-01-1662
Several governments are increasing the blending mandate of renewable fuels to reduce the life-cycle greenhouse gas emissions of the road transport sector. Currently, ethanol is a prominent renewable fuel and is used in low-level blends, such as E10 (10 %v/v ethanol, 90 %v/v gasoline) in many parts of the world. However, the exact concentration of ethanol amongst other renewable fuel components in commercially available fuels can vary and is not known. To understand the impact of the renewable fuel content on the emissions from Euro 6d-TEMP emissions specification vehicles, this paper examines the real-driving emissions (RDE) from four 2020 to 2022 model-year vehicles run on E0 and E10 fuels. CO, CO2, NO, and NO2 were measured through a Portable Emissions Measuring System (PEMS).
Journal Article

Isolated Low Temperature Heat Release in Spark Ignition Engines

2023-04-11
2023-01-0235
Low temperature heat release (LTHR) has been of interest to researchers for its potential to mitigate knock in spark ignition (SI) engines and control auto-ignition in advanced compression ignition (ACI) engines. Previous studies have identified and investigated LTHR in both ACI and SI engines before the main high temperature heat release (HTHR) event by appropriately curating the in-cylinder thermal state during compression, or in the case of SI engines, timing the spark discharge late to reveal LTHR (sometimes referred to as pre-spark heat release). In this work, LTHR is demonstrated in isolation from HTHR events. Tests were run on motored single-cylinder engines and inlet air temperatures and pressures were adjusted to realise LTHR from n-heptane and iso-octane (2,2,4-trimethylpentane) without entering the HTHR regime. LTHR was observed for a lean n-heptane-air mixture at inlet temperatures ranging from 60°C to 100°C and inlet pressures of 0.9 bar (absolute).
Technical Paper

In the Wake of Others: Unsteady Bonnet Surface Pressure Predictions and Measurements

2020-04-14
2020-01-0676
In use cars often drive through the wakes of other vehicles. It has long been appreciated that this imposes a fluctuating onset flow which can excite a structural response in vehicle panels, particularly the bonnet. This structure must be designed to be robust to such excitation to guarantee structural integrity and maintain customer expectations of quality. As we move towards autonomous vehicles and exploit platoons for drag reduction, this onset flow condition merits further attention. The work reported here comprises both measurements and simulation capturing the unsteady pressure distribution over the bonnet of an SUV following a similar vehicle at high speed and in relatively close proximity. Measurements were taken during track testing and include 48 static measurement locations distributed over the bonnet where the unsteady static pressures were recorded.
Technical Paper

Modelling Pressure Losses in Gasoline Particulate Filters in High Flow Regimes and Temperatures

2019-12-19
2019-01-2330
This study presents a one-dimensional model for the prediction of the pressure loss across a wall-flow gasoline particulate filter (GPF). The model is an extension of the earlier models of Bissett [1] and Konstandopoulos and Johnson [2] to the turbulent flow regime, which may occur at high flow rates and temperatures characteristic of gasoline engine exhaust. A strength of the proposed model is that only one parameter (wall permeability) needs to be calibrated. An experimental study of flow losses for cold and hot flow is presented, and a good agreement is demonstrated. Unlike zero-dimensional models, this model provides information about the flow along the channels and thus can be extended for studies of soot and ash accumulation, heat transfer and reaction kinetics.
Technical Paper

Sub-23 nm Particulate Emissions from a Highly Boosted GDI Engine

2019-09-09
2019-24-0153
The European Particle Measurement Program (PMP) defines the current standard for measurement of Particle Number (PN) emissions from vehicles in Europe. This specifies a 50% count efficiency (D50) at 23 nm and a 90% count efficiency (D90) at 41 nm. Particulate emissions from Gasoline Direct Injection (GDI) engines have been widely studied, but usually only in the context of PMP or similar sampling procedures. There is increasing interest in the smallest particles - i.e. smaller than 23 nm - which can be emitted from vehicles. The literature suggest that by moving D50 to 10 nm, PN emissions from GDI engines might increase by between 35 and 50% but there remains a lot of uncertainty.
Technical Paper

HyPACE - Hybrid Petrol Advance Combustion Engine - Advanced Boosting System for Extended Stoichiometric Operation and Improved Dynamic Response

2019-04-02
2019-01-0325
The HyPACE (Hybrid Petrol Advanced Combustion Engine) project is a part UK government funded research project established to develop a high thermal efficiency petrol engine that is optimized for hybrid vehicle applications. The project combines the capabilities of a number of partners (Jaguar Land Rover, BorgWarner, MAHLE Powertrain, Johnson Matthey, Cambustion and Oxford University) with the target of achieving a 10% vehicle fuel consumption reduction, whilst still achieving a 90 to 100 kW/liter power rating through the novel application of a combination of new technologies. The baseline engine for the project was Jaguar Land Rover’s new Ingenium 4-cylinder petrol engine which includes an advanced continuously variable intake valve actuation mechanism. A concept study has been undertaken and detailed combustion Computational Fluid Dynamics (CFD) models have been developed to enable the optimization of the combustion system layout of the engine.
Technical Paper

Fast NGC: A New On-Line Technique for Fuel Flow Measurement

2019-01-15
2019-01-0062
Knowledge of fuel mass injected in an individual cycle is important for engine performance and modelling. Currently direct measurements of fuel flow to individual cylinders of an engine are not possible on-engine or in real-time due to a lack of available appropriate measurement techniques. The objective of this work was to undertake real-time Coriolis fuel flow measurement using GDI injectors on a rig observing fuel mass flow rate within individual fuel injections. This paper evaluates the potential of this technology - combining Coriolis Flow Meters (CFMs) with Prism signal processing together known as Fast Next Generation Coriolis (Fast NGC), and serves as a basis for future transitions on-engine applications. A rig-based feasibility study has been undertaken injecting gasoline through a GDI injector at 150 bar in both single shot mode and at a simulated engine speeds of 1788 and 2978 rpm. The results show that these injections can, in principle, be observed.
Technical Paper

A Review of the Requirements for Injection Systems and the Effects of Fuel Quality on Particulate Emissions from GDI Engines

2018-09-10
2018-01-1710
Particulate emissions from Gasoline Direct Injection (GDI) engines have been an important topic of recent research interest due to their known environmental effects. This review paper will characterise the influence of different gasoline direct injection fuel systems on particle number (PN) emissions. The findings will be reviewed for engine and vehicle measurements with appropriate driving cycles (especially real driving cycles) to evaluate effects of the fuel injection systems on PN emissions. Recent technological developments alongside the trends of the influence of system pressure and nozzle design on injector tip wetting and deposits will be considered. Besides the engine and fuel system it is known that fuel composition will have an important effect on GDI engine PN emissions. The evaporation qualities of fuels have a substantial influence on mixture preparation, as does the composition of the fuel itself.
Journal Article

A New Method for Measuring Fuel Flow in an Individual Injection in Real Time

2018-04-03
2018-01-0285
Knowledge of fuel mass injected in an individual cycle is important for engine performance and modeling. At the moment, such measurements are not possible on engine or in real time. In this article, a new method using Coriolis flow meters (CFMs) and a new, patented, signal processing technique, known as the Prism, are introduced. CFMs are extensively used for flow measurement both in the automotive industry and further afield and, when coupled with the Prism, have the potential to make these challenging high-speed measurements. A rig-based feasibility study was conducted injecting very small quantities of diesel (3 mg) at pressures of up to 1000 bar at simulated engine speeds of up to 4000 rpm. The results show that these small quantities can in principle be measured. The results also reveal a previously unknown behavior of CFMs when measuring very low flow rates at high speed.
Technical Paper

Measurement of Soot Concentration in a Prototype Multi-Hole Diesel Injector by High-Speed Color Diffused Back Illumination Technique

2017-10-08
2017-01-2255
A prototype multi-hole diesel injector operating with n-heptane fuel from a high-pressure common rail system is used in a high-pressure and high-temperature test rig capable of reaching 1100 Kelvin and 150 bar under different oxygen concentrations. A novel optical set-up capable of visualizing the soot cloud evolution in the fuel jet from 30 to 85 millimeters from the nozzle exit with the high-speed color diffused back illumination technique is used as a result of the insertion of a high-pressure window in the injector holder opposite to the frontal window of the vessel. The experiments performed in this work used one wavelength provide information about physical of the soot properties, experimental results variating the operational conditions show the reduction of soot formation with an increase in injection pressure, a reduction in ambient temperature, a reduction in oxygen concentration or a reduction in ambient density.
Journal Article

In-Cylinder Temperature Measurements Using Laser Induced Grating Spectroscopy and Two-Colour PLIF

2017-09-04
2017-24-0045
In-cylinder temperature measurements are vital for the validation of gasoline engine modelling and useful in their own right for explaining differences in engine performance. The underlying chemical reactions in combustion are highly sensitive to temperature and affect emissions of both NOx and particulate matter. The two techniques described here are complementary, and can be used for insights into the quality of mixture preparation by measurement of the in-cylinder temperature distribution during the compression stroke. The influence of fuel composition on in-cylinder mixture temperatures can also be resolved. Laser Induced Grating Spectroscopy (LIGS) provides point temperature measurements with a pressure dependent precision in the range 0.1 to 1.0 % when the gas composition is well characterized and homogeneous; as the pressure increases the precision improves.
Technical Paper

Influence of Coolant Temperature and Flow Rate, and Air Flow on Knock Performance of a Downsized, Highly Boosted, Direct-Injection Spark Ignition Engine

2017-03-28
2017-01-0664
The causes of engine knock are well understood but it is important to be able to relate these causes to the effects of controllable engine parameters. This study attempts to quantify the effects of a portion of the available engine parameters on the knock behavior of a 60% downsized, DISI engine running at approximately 23 bar BMEP. The engines response to three levels of coolant flow rate, coolant temperature and exhaust back pressure were investigated independently. Within the tested ranges, very little change in the knock limited spark advance (KLSA) was observed. The effects of valve timing on scavenge flow and blow through (the flow of fresh air straight into the exhaust system during the valve overlap period) were investigated at two conditions; at fixed inlet/exhaust manifold pressures, and at fixed engine torque. For both conditions, a matrix of 8 intake/exhaust cam combinations was tested, resulting in a wide range of valve overlap conditions (from 37 to -53°CA).
Technical Paper

Spray Behaviour and Particulate Matter Emissions with M15 Methanol/Gasoline Blends in a GDI Engine

2016-04-05
2016-01-0991
Model M15 gasoline fuels have been created from pure fuel components, to give independent control of volatility, the heavy end content and the aromatic content, in order to understand the effect of the fuel properties on Gasoline Direct Injection (GDI) fuel spray behaviour and the subsequent particulate number emissions. Each fuel was imaged at a range of fuel temperatures in a spray rig and in a motored optical engine, to cover the full range from non-flashing sprays through to flare flashing sprays. The spray axial penetration (and potential piston and liner impingement), and spray evaporation rate were extracted from the images. Firing engine tests with the fuels with the same fuel temperatures were performed and exhaust particulate number spectra captured using a DMS500 Mark II Particle Spectrometer.
Technical Paper

Robust Application of CBE and OBE for Engine Testing System Diagnosis

2016-04-05
2016-01-0987
Tightening emissions regulations are driving increasing focus on both equipment and measurement capabilities in the test cell environment. Customer expectations are therefore rising with respect to data uncertainty. Key critical test cell parameters such as load, fuel rate, air flow and emission measurements are more heavily under scrutiny and require real time methods of verification over and above the traditional test cell calibration in 40CFR1065 regulation. The objective of this paper is to develop a system to use a carbon dioxide (CO2) based balance error and an oxygen (O2) based balance error for diagnosing the main measurement system error in the test cell such as fuel rate meter, air flow meter, emission sample line, pressure transducer and thermocouples. The general combustion equation is used to set up the balance equations with assumptions. To validate the air fuel ratio balance model an experimental investigation was carried out for D2 5 mode and C1 8 mode cycle test.
Technical Paper

Demonstrating the Use of Thin Film Gauges for Heat Flux Measurements in ICEs: Measurements on an Inlet Valve in Motored Operation

2016-04-05
2016-01-0641
To optimize internal combustion engines (ICEs), a good understanding of engine operation is essential. The heat transfer from the working gases to the combustion chamber walls plays an important role, not only for the performance, but also for the emissions of the engine. Besides, thermal management of ICEs is becoming more and more important as an additional tool for optimizing efficiency and emission aftertreatment. In contrast little is known about the convective heat transfer inside the combustion chamber due to the complexity of the working processes. Heat transfer measurements inside the combustion chamber pose a challenge in instrumentation due to the harsh environment. Additionally, the heat loss in a spark ignition (SI) engine shows a high temporal and spatial variation. This poses certain requirements on the heat flux sensor. In this paper we examine the heat transfer in a production SI ICE through the use of Thin Film Gauge (TFG) heat flux sensors.
Technical Paper

The Effect of Combustion Knock on the Instantaneous Heat Flux in Spark Ignition Engines

2016-04-05
2016-01-0700
Knocking combustion places a major limit on the performance and efficiency of spark ignition engines. Spontaneous ignition of the unburned air-fuel mixture ahead of the flame front leads to a rapid release of energy, which produces pressure waves that cause the engine structure to vibrate at its natural frequencies and produce an audible ‘pinging’ sound. In extreme cases of knock, increased temperatures and pressures in the cylinder can cause severe engine damage. Damage is thought to be caused by thermal strain effects that are directly related to the heat flux. Since it will be the maximum values that are potentially the most damaging, then the heat flux needs to be measured on a cycle-by-cycle basis. Previous work has correlated heat flux with the pressure fluctuations on an average basis, but the work here shows a correlation on a cycle-by-cycle basis. The in-cylinder pressure and surface temperature were measured using a pressure transducer and eroding-type thermocouple.
Technical Paper

Influence of Short Rear End Tapers on the Unsteady Base Pressure of a Simplified Ground Vehicle

2016-04-05
2016-01-1590
Short tapered sections on the trailing edge of the roof, underside and sides of a vehicle are a common feature of the aerodynamic optimization process and are known to have a significant effect on the base pressure and thereby the vehicle drag. In this paper the effects of such high aspect ratio chamfers on the time-dependent base pressure are investigated. Short tapered surfaces, with a chord approximately equal to 4% of the overall model length, were applied to the trailing edges of a simplified passenger car model (the Windsor Body) and base pressure studied via an array of surface pressure tappings. Two sets of configurations were tested. In the first case, a chamfer was applied only to the top or bottom trailing edge. A combination of taper angles was also considered. In the second case, the chamfer was applied to the side edges of the model base, leaving the horizontal trailing edges squared.
Technical Paper

Aspects of Numerical Modelling of Flash-Boiling Fuel Sprays

2015-09-06
2015-24-2463
Flash-boiling of sprays may occur when a superheated liquid is discharged into an ambient environment with lower pressure than its saturation pressure. Such conditions normally exist in direct-injection spark-ignition engines operating at low in-cylinder pressures and/or high fuel temperatures. The addition of novel high volatile additives/fuels may also promote flash-boiling. Fuel flashing plays a significant role in mixture formation by promoting faster breakup and higher fuel evaporation rates compared to non-flashing conditions. Therefore, fundamental understanding of the characteristics of flashing sprays is necessary for the development of more efficient mixture formation. The present computational work focuses on modelling flash-boiling of n-Pentane and iso-Octane sprays using a Lagrangian particle tracking technique.
Technical Paper

The Effect of Non-Ideal Vapour-Liquid Equilibrium and Non-Ideal Liquid Diffusion on Multi-Component Droplet Evaporation for Gasoline Direct Injection Engines

2015-04-14
2015-01-0924
A model for the evaporation of a multi-component fuel droplet is presented that takes account of temperature dependent fuel and vapour properties, evolving droplet internal temperature distribution and composition, and enhancement to heat and mass transfer due to droplet motion. The effect on the internal droplet mixing of non-ideal fluid diffusion is accounted for. Activity coefficients for vapour-liquid equilibrium and diffusion coefficients are determined using the UNIFAC method. Both well-mixed droplet evaporation (assuming infinite liquid mass diffusivity) and liquid diffusion-controlled droplet evaporation (iteratively solving the multi-component diffusion equation) have been considered. Well-mixed droplet evaporation may be applicable with slow evaporation, for example early gasoline direct injection; diffusion-controlled droplet evaporation must be considered when faster evaporation is encountered, for example when injection is later, or when the fuel mixture is non-ideal.
X