Refine Your Search

Topic

Search Results

Technical Paper

Impact of Plasma Stretch on Spark Energy Release Rate under Flow Conditions

2022-03-29
2022-01-0438
Performance of the ignition system becomes more important than ever, because of the extensively used EGR in modern spark-ignition engines. Future lean burn SI and SACI combustion modes demand even stronger ignition capability for robust ignition control. For spark-based ignition systems, extensive research has been carried out to investigate the discharge characteristics of the ignition process, including discharge current amplitude, discharge duration, spark energy, and plasma stretching. The correlation between the spark stretch and the discharge energy, as well as the impact of discharge current level on this correlation, are important with respect to both ignition performance, and ignition system design. In this paper, a constant volume combustion chamber is applied to study the impact of plasma stretch on the spark energy release process with cross-flow speed from 0 m/s up to 70 m/s.
Technical Paper

Investigation of Flame Detachment Effect during Early Flame Development in a Swirl Flow Field

2021-04-06
2021-01-0482
Lean burn is regarded as one of the most effective ways to improve fuel efficiency for spark ignition engines. However, the excessive air dilution deteriorates combustion stability, limiting the degree of engine operational dilution. The intensified flow field is therefore introduced into the cylinder to mitigate the decline of the burning velocity caused by the leaned-out fuel-air mixture. In a moderate flow field, flame kernels are formed near the hot spark plasma during discharge and stick to the spark gap even after the end of discharge; the flame front then propagates outward and evolves into self-sustained flame. Flame attaching to the spark gap is a common phenomenon in the early combustion stage and has been reported to be beneficial for flame inception in the literature.
Technical Paper

Discharge Current Management for Diluted Combustion under Forced Flow Conditions

2020-04-14
2020-01-1118
Lean burn or EGR diluted combustion with enhanced charge motion is effective in improving the efficiency of spark ignition engines. However, the ignition process under these conditions is getting more challenging due to higher ignition energy required by the lean or diluted mixture, as well as the interactions of the gas flow on the flame kernel. Enhanced spark discharge energy is essential to initiate the combustion under these conditions. Moreover, the discharge process should be more carefully controlled to improve the effectiveness of the spark. In this study, spark ignition systems with boosted discharge energy are used to ignite diluted air-fuel mixture under forced flow conditions. The impacts of the discharge current level, the discharge duration and the discharge current profile on the ignition are investigated in detail using optical diagnosis.
Technical Paper

Energy Enhanced Adaptive Spark Ignition for Lean Combustion Initiation

2020-04-14
2020-01-0841
For internal combustion engine systems, lean and diluted combustion is an important technology applied for fuel efficiency improvement. Because of the thermodynamic boundary conditions and the presence of in-cylinder flow, the development of a well-sustained flame kernel for lean combustion is a challenging task. Reliable spark discharge with the addition of enhanced delivered energy is thus needed at certain time durations to achieve successful combustion initiation of the lean air-fuel mixture. For a conventional transistor coil ignition system, only limited amount of energy is stored in the ignition coil. Therefore, both the energy of the spark discharge and the duration of the spark discharge are bounded. To break through the energy limit of the conventional transistor coil ignition system, in this work, an adaptive spark ignition system is introduced. The system has the ability to reconstruct the conductive ion channels whenever it is interrupted during the spark discharge.
Technical Paper

Performance Study of an Innovative Collaborative Robot Gripper Design on Different Fabric Pick and Place Scenarios

2020-04-14
2020-01-1304
Light-weighting fiber composite materials introduced to reduce vehicle mass and known as innovative materials research activities since they provide high specific stiffness and strength compared to contemporary engineering materials. Nonetheless, there are issues related automation strategies and handling methods. Material handling of flexible textile/fiber components is a process bottleneck and it is currently being performed by setting up multi-stage manual operations for hand layups. Consequently, the long-term research objective is to develop semi-automated pick and place processes for flexible materials utilizing collaborative robots within the process. The immediate research is to experimentally validate innovatively designed grippers for efficient material pick and place tasks.
Journal Article

Impact of Spark Plasma Length on Flame Kernel Development under Flow Condition

2020-04-14
2020-01-1114
Advanced ignition systems with enhanced discharge current have been extensively investigated in research, since they are highly regarded as having the potential to overcome challenges that arise when spark-ignition engines are running under lean or EGR diluted conditions. Local flow field is also of particular importance to improve the ignitability of the air-fuel mixture in SI engines as the spark plasma channel can be stretched by the flow across the spark gap, leading to longer plasma length, thus more thermal spark energy distributed to the air-fuel mixture in the vicinity of the spark plug. Research results have shown that a constantly high discharge current is effective to maintain a stable spark plasma channel with less restrikes and longer plasma holding period.
Technical Paper

Ion Current Measurement of Diluted Combustion Using a Multi-Electrode Spark Plug

2018-04-03
2018-01-1134
Close-loop feedback combustion control is essential for improving the internal combustion engines to meet the rigorous fuel efficiency demands and emission legislations. A vital part is the combustion sensing technology that diagnoses in-cylinder combustion information promptly, such as using cylinder pressure sensor and ion current measurement. The promptness and fidelity of the diagnostic are particularly important to the potential success of using intra-cycle control for abnormal cycles such as super knocking and misfiring. Many research studies have demonstrated the use of ion-current sensing as feedback signal to control the spark ignition gasoline engines, with the spark gap shared for both ignition and ion-current detection. During the spark glow phase, the sparking current may affect the combustion ion current signal. Moreover, the electrode gap size is optimized for sparking rather than measurement of ion current.
Technical Paper

Modular Design and Methods to Optimize Seat Complete Assemblies

2017-03-28
2017-01-1309
Modularity in product architecture and its significance in product development have become an important product design topics in the last few decades. Several Product Modularity definitions and methodologies were developed by many researchers; however, most of the definitions and concepts have proliferated to the extent that it is difficult to apply one universal definition for modular product architecture and in product development. Automotive seat modular strategy and key factors for consideration towards modular seat design and assemblies are the main focus of this work. The primary objectives are focused on the most “natural segmentation” of the seat elements (i.e., cushions, backs, trims, plastics, head restraints, etc.) to enable the greatest ease of final assembly and greatest flexibility for scalable feature offerings around common assembly “hard-points.”
Technical Paper

A Review of Human Physiological, Psychological & Human Biomechanical Factors on Perceived Thermal Comfort of Automotive Seats.

2017-03-28
2017-01-1388
Thermal comfort in automotive seating has been studied and discussed for a long time. The available research, because it is focused on the components, has not produced a model that provides insight into the human-seat system interaction. This work, which represents the beginning of an extensive research program, aims to establish the foundation for such a model. This paper will discuss the key physiological, psychological, and biomechanical factors related to perceptions of thermal comfort in automotive seats. The methodology to establish perceived thermal comfort requirements will also be presented and discussed.
Journal Article

Methods for Evaluating the Functional Work Space for Machine Tools and 6 Axis Serial Robots

2016-04-05
2016-01-0338
The ‘boundary of space’ model representing all possible positions which may be occupied by a mechanism during its normal range of motion (for all positions and orientations) is called the work envelope. In the robotic domain, it is also known as the robot operating envelope or workspace. Several researchers have investigated workspace boundaries for different degrees of freedom (DOF), joint types and kinematic structures utilizing many approaches. The work envelope provides essential boundary information, which is critical for safety and layout concerns, but the work envelope information does not by itself determine the reach feasibility of a desired configuration. The effect of orientation is not captured as well as the coupling related to operational parameters. Included in this are spatial occupancy concerns due to linking multiple kinematic chains, which is an issue with multi-tasking machine tools, and manufacturing cells.
Journal Article

A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing Systems

2016-04-05
2016-01-0337
Contemporary manufacturing systems are still evolving. The system elements, layouts, and integration methods are changing continuously, and ‘collaborative robots’ (CoBots) are now being considered as practical industrial solutions. CoBots, unlike traditional CoBots, are safe and flexible enough to work with humans. Although CoBots have the potential to become standard in production systems, there is no strong foundation for systems design and development. The focus of this research is to provide a foundation and four tier framework to facilitate the design, development and integration of CoBots. The framework consists of the system level, work-cell level, machine level, and worker level. Sixty-five percent of traditional robots are installed in the automobile industry and it takes 200 hours to program (and reprogram) them.
Journal Article

A Methodology for Investigating and Modelling Laser Clad Bead Geometry and Process Parameter Relationships

2014-04-01
2014-01-0737
Laser cladding is a method of material deposition through which a powdered or wire feedstock material is melted and consolidated by use of a laser to coat part of a substrate. Determining the parameters to fabricate the desired clad bead geometry for various configurations is problematic as it involves a significant investment of raw materials and time resources, and is challenging to develop a predictive model. The goal of this research is to develop an experimental methodology that minimizes the amount of data to be collected, and to develop a predictive model that is accurate, adaptable, and expandable. To develop the predictive model of the clad bead geometry, an integrated five-step approach is presented. From the experimental data, an artificial neural network model is developed along with multiple regression equations.
Technical Paper

Computational Study of Reactivity Controlled Compression Ignition (RCCI) Combustion in a Heavy-Duty Diesel Engine Using Natural Gas

2014-04-01
2014-01-1321
Reactivity controlled compression ignition (RCCI) combustion employs two fuels with a large difference in auto-ignition properties that are injected at different times to generate a spatial gradient of fuel-air mixtures and reactivity. Researchers have shown that RCCI offers improved fuel efficiency and lower NOx and Soot exhaust emissions when compared to conventional diesel diffusion combustion. The majority of previous research work has been focused on premixed gasoline or ethanol for the low reactivity fuel and diesel for the high reactivity fuel. The increased availability of natural gas (NG) in the U.S. has renewed interest in the application of compressed natural gas (CNG) to heavy-duty (HD) diesel engines in order to realize fuel cost savings and reduce pollutant emissions, while increasing fuel economy. Thus, RCCI using CNG and diesel fuel warrants consideration.
Technical Paper

The Band Importance Function in the Evaluation of the Speech Intelligibility Index at the Speech Reception Threshold within a Simulated Driving Environment

2013-05-13
2013-01-1953
This study provides an overview of a novel method for evaluating in-vehicle speech intelligibility using the Speech Intelligibility Index (SII). The approach presented is based on a measured speech signal evaluated at the sentence Speech Reception Threshold (sSRT) in a simulated driving environment. In this context, the impact of different band importance functions in the evaluation of the SII using the Hearing in Noise Test (HINT) in a driving simulator is investigated.
Technical Paper

Effect of Cooling Rates on the Microstructure Evolution and Eutectic Formation of As-cast Mg-Al-Ca Alloys

2009-04-20
2009-01-0789
A Mg-5.0wt.%Al-2.0wt.%Ca alloy (AC52) was cast at different cooling rates varying from 0.5 to 65 °C/s. The dendrites was characterized by determining the secondary dendrite arm spacing (SDAS) and the volume fraction of secondary eutectic phases with the linear intercept and point counting methods, respectively. The SDAS decreases significantly with increasing cooling rates, while the volume fraction of the eutectic phase increases from 10.8 ± 1.44 vol.% at 0.5 °C/s to 20.4 ± 1.52 vol.% at 20 °C/s. However, a further increase in cooling rate beyond 20 °C/s has limited influence on the volume fraction of eutectic phases. A large number of dispersed eutectic phases were observed in the primary α-Mg of the alloys cast at low cooling rates. Although, at the microscale, there were no dispersed eutectic phases in alloys cast at a high cooling rate of 30 °C/s, nanoscale eutectic phases were found by TEM observation.
Journal Article

Development of an Advanced Driver Model and Simulation Environment for Automotive Racing

2009-04-20
2009-01-0434
The paper describes a closed-loop vehicle simulation environment developed to support a virtual vehicle design and testing methodology, proposed for the University of Windsor Formula SAE team. Virtual prototyping and testing were achieved through co-simulation of Matlab/Simulink® and Carsim®. The development of the required hybrid-control driver and vehicle models are described. The proposed models were validated with in vehicle test data. The proposed methods have shown to be effective and robust in predicting driver response, while controlling the vehicle within the developed simulation environment.
Journal Article

Virtual Motorsports as a Vehicle Dynamics Teaching Tool

2008-12-02
2008-01-2967
The paper describes a ‘virtual motorsports’ event developed by the University of Windsor Vehicle Dynamics and Control Research Group. The event was a competitive project-based component of a Vehicle Dynamics course offered by the University's Department of Mechanical, Automotive, & Materials Engineering. The simulated race was developed to provide fourth year automotive engineering students with design and race experience, similar to that found in Formula SAE®or SAE Baja®, but within the confines of a single academic semester. The project, named ‘Formula463’, was conducted entirely within a virtual environment, and encompassed design, testing, and racing of hi-fidelity virtual vehicle models. The efficacy of the Formula463 program to provide students with a design experience using model based simulation tools and methods has been shown over the past two years. All of the software has been released under a General Public License and is freely available on the authors website.
Technical Paper

Constructing a Gate-to-gate Life Cycle Inventory (LCI) of End-of-Life Vehicle (ELV) Dismantling and Shredding Processes

2008-04-14
2008-01-1283
End-of-life is the least studied phase of the vehicle life-cycle. Dismantling and shredding are the principal processes used for vehicle end-of-life (VEOL) management in Canada and the U.S. and are typically perceived as distinct processes, each one having its own unique challenges. Dismantling typically precedes shredding, with vehicle parts and materials removed for direct reuse, for remanufacturing and reuse, or for recycling. Dismantling may be perceived as a non-preferred alternative, compared to shredding, because it is principally a manual process which can be cost prohibitive in the North America/western labour market. However, there has been no exhaustive assessment of the dismantling process. Because of the complexity in automobiles, significantly more needs to be known about dismantling, its benefits and impacts, its efficiencies and inefficiencies, and its relation to other ELV management processes.
Technical Paper

Roof Strength Requirement for Vehicles Involved in Rollover Crash

2008-04-14
2008-01-0510
Rollover crash is one of the most serious safety problems for light weight vehicles. In the USA, rollover crashes account for almost one-third of all occupant fatalities in light weight vehicles. Similar statistics are found for other countries. Thus, rollover crashes have received significant attention in recent years. In the USA and Canada, automotive manufacturers are required to comply with the roof strength requirement of “1.5 times the unloaded vehicle weight” to ensure safety in rollover. NHTSA is currently considering a set of countermeasures to improve the rollover safety, where one of the proposals is to increase the roof strength limit to “2.5 times the unloaded vehicle weight”. This increased roof strength limit seemingly has been motivated based on the benchmark study of current vehicle fleet.
Technical Paper

Variable Torque Distribution Yaw Moment Control for Hybrid Powertrains

2007-04-16
2007-01-0278
This paper proposes and evaluates the use of a robust variable torque distribution (VTD) yaw moment control for an all wheel drive (AWD) hybrid vehicle prototype currently under development. The proposed VTD controller was used to improve the linearity of vehicle response to driver input through the modulation of front-to-rear torque distribution and a corrective torque differential between the left and right rear wheels. The development of a non-linear vehicle model and a reference model tracking sliding mode based control are discussed. The efficacy of the proposed control system was demonstrated through the use of numerical simulations using the developed non-linear vehicle model. The simulation results presented indicate the effectiveness of the proposed system and the potential restrictions to such a system including tire saturation and drivetrain component limitations.
X