Refine Your Search

Topic

Author

Search Results

Technical Paper

Art Meets Automotive: Design of a Curve-Adaptive Origami Gripper for Handling Textiles on Non-Planar Mold Surfaces

2024-04-09
2024-01-2575
The handling of flexible components creates a unique problem set for pick and place automation within automotive production processes. Fabrics and woven textiles are examples of flexible components used in car interiors, for air bags, as liners and in carbon-fiber layups. These textiles differ greatly in geometry, featuring complex shapes and internal slits with varying material properties such as drape characteristics, crimp resistance, friction, and fiber weave. Being inherently flexible and deformable makes these materials difficult to handle with traditional rigid grippers. Current solutions employ adhesive, needle-based, and suction strategies, yet these systems prove a higher risk of leaving residue on the material, damaging the weave, or requiring complex assemblies. Pincer-style grippers are suitable for rigid components and offer strong gripping forces, yet inadvertently may damage the fabric, and introduce wrinkles / folded-over edges during the release process.
Technical Paper

LCA and LCC of a Li-ion Battery Pack for Automotive Application

2023-08-28
2023-24-0170
Lithium Ion (Li-ion) batteries have emerged as the dominant technology for electric mobility due to their performance, stability, and long cycle life. Nevertheless, there are emerging environmental and economic issues from Li-ion batteries related to depleting critical resources and their potential shortage. This paper focuses on developing the Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) of a generic Li-ion battery pack with a Nickel-Manganese-Cobalt (NMC) cathode chemistry, being the most used, and a capacity of 95 kWh as an average between different carmakers. The LCA and LCC include all the relevant phases of the life cycle of the product. The costs related to the LCC assessment have been taken as secondary data. Lastly, the same system boundary has been chosen both for the LCA and LCC.
Technical Paper

Performance and Emission Characteristics of Direct Injection DME Combustion under Low NOx Emissions

2023-04-11
2023-01-0327
Compression ignition internal combustion engines provide unmatched power density levels, making them suitable for numerous applications including heavy-duty freight trucks, marine shipping, and off-road construction vehicles. Fossil-derived diesel fuel has dominated the energy source for CI engines over the last century. To mitigate the dependency on fossil fuels and lessen anthropogenic carbon released into the atmosphere within the transportation sector, it is critical to establish a fuel source which is produced from renewable energy sources, all the while matching the high-power density demands of various applications. Dimethyl ether (DME) has been used in non-combustion applications for several decades and is an attractive fuel for CI engines because of its high reactivity, superior volatility to diesel, and low soot tendency. A range of feedstock sources can produce DME via the catalysis of syngas.
Journal Article

Development of a Novel High Strength Aluminum-Cerium Based Rotor Alloy for Electric Vehicle Induction Motor Applications

2023-04-11
2023-01-0878
To increase vehicle range, light weighting of electric vehicles has been extensively researched and implemented by using aluminum intensive solutions. With regards to traction motors, aluminum alloys that have a desired combination of high electrical conductivity and strength are required for high power output and efficiency. In this research, a novel Al-Ce based alloy, with minor additions of Si and Mg for strengthening, was investigated in different heat treatment tempers to maximize mechanical properties while maintaining a high electrical conductivity. This new alloy system appears to have addressed the classic conundrum of the inverse relationship of mechanical performance verses electrical conductivity for traditional aluminum alloy systems. The results suggest that the Al-Ce-Si-Mg alloy had yield strength in excess of 120 MPa and electrical conductivity of at least 50 %IACS in the T5 and T6 conditions.
Technical Paper

Wear and Corrosion Behaviours of PEA Alumina Coatings on Gray Cast Iron

2022-03-29
2022-01-0329
Alumina (Al2O3) thin film coatings are applied on Al alloys using Plasma Electrolytic Oxidation (PEO) method to reduce the wear and corrosion problems. Plasma Electrolytic Aluminating (PEA) is a technique which could generate Alumina coatings on cast iron, mild steel and copper alloys. In this study, the aim is to explore the anti-wear and anti-corrosion behaviours of PEA Alumina coatings on gray cast iron. The dry sliding tribology test data was obtained from Pin-on-Disk (POD) tests against SAE 52100 steel and Tungsten Carbide (WC) counterfaces. Comparing with the PEO Alumina coatings, the PEA Alumina coating has much lower Coefficient of Friction (COF) and less wear. The microstructure, chemical composition and phase composition of this coating were investigated with Scanning Electron Microscope (SEM), Energy-Dispersive X-Ray Spectroscopy (EDX) and X-Ray Diffraction (XRD), respectively. There was FeO (or FeAl2O4) found on the PEA Alumina coating.
Technical Paper

Electrical Insulation Properties of Alumina Coatings on SAE 52100 Bearing Steel

2022-03-29
2022-01-0726
In recent years, bearing electrical failures have been a significant concern in electric cars, restricting electric engine life. This work aims to introduce a coating approach for preventing electrical erosion on 52100 alloy steel samples, the most common material used on manufacturing bearings. This paper discusses the causes of shaft voltage and bearing currents, and summarizes standard electrical bearing failure mechanisms, such as morphological damages and lubrication failures. Alumina coatings are suitable for insulating the 52100 alloy steel samples because alumina coatings provide excellent insulation, hardness, and corrosion resistance, among other characteristics. The common method to coat an insulated alumina coating on the bearing is thermal spraying, but overspray can cause environmental issues, and the coating procedures are costly and time-consuming.
Journal Article

Investigation of Al2O3-Ni Coated Cast Iron Brake Rotors Under Modified Brake Dynamometer Test Standards

2022-03-29
2022-01-0273
Due to the reduced or less-frequent usages of the friction brakes and the lower brake rotor temperature on electrical vehicles (EV), corrosion would much likely occur on brake rotors. Using hard braking to clean the corroded rotor surfaces often leads to extra rotor surface wear. Improvement in corrosion and wear resistance is an important technological topic to brake rotors for EVs. Many original equipment manufacturers (OEM) and their suppliers are exploring surface treatments including laser cladding and thermal spray processes on cast iron rotors to combat the corrosion issues. However, mentioned surface coating processes increase the cost of brake rotors and there is a need to search for cost-effective coating processes. In this research, a new Al2O3-Ni composite coating was proposed for preparation of a commercial cast iron brake rotor using plasma electrolytic aluminating (PEA) followed by electroless nickel plating (ENP) processes.
Technical Paper

Maximized Energy Absorption and an Investigation on Practical Limitations for the Axial Cutting and Hybrid Cutting/Clamping Deformation Modes

2021-04-06
2021-01-0285
The axial cutting deformation mode is a novel alternative to progressive folding, the current state-of-the-art, where the cutting scheme exhibits more favorable mechanical performance. By splitting the extrusion into multiple evenly spaced and near-identical petals a highly consistent force response can be achieved. Maximizing the energy absorbing capacity of a sacrificial energy absorber is a fundamental design challenge in the field of crashworthiness. Generating hybrid deformation modes by simultaneously combining multiple deformation mechanisms into a single safety system is a promising technique to achieve high capacity energy dissipation. However, these systems tend to be susceptible to transitioning deformation modes (e.g. from progressive folding to global bending) since the sacrificial material is often loaded at or near its capacity.
Technical Paper

Electrochemical Analysis of High Capacity Li-Ion Pouch Cell for Automotive Applications

2021-04-06
2021-01-0760
Major original equipment manufacturers (OEMs) have already marketed electric vehicles in large scale but apart from business strategies and policies, the real engineering problems must be addressed. Lithium-ion batteries are a promising technology for energy storage; however, their low energy density and complex electro-chemical nature, compared to fossil fuels, presents additional challenges. Their complex nature and strong temperature dependence during operation must be studied with additional accuracy, capable to predict their behavior. In this research, a pseudo two dimensional (P2D) electro-chemical model, for a recent high capacity NMC pouch cell for automotive applications is developed. The electrochemical model with its temperature dependent parameters is validated at high, low, and reference temperature within 10°C to 50°C temperature range. For each temperature various discharge C-rates to accurately replicate the battery cell operational conditions.
Journal Article

Suitability Assessment of an Uncalibrated Body Force Based Fan Modeling Approach to Predict Automotive Underhood Airflows

2021-04-06
2021-01-0820
The automotive fan is a critical component of the cooling module, providing the majority of the cooling airflow over the heat exchangers and to underbody components at low speed, idle, and key-off conditions. Accurately predicting the performance of the automotive cooling fan is critical for sizing heat exchangers and ensuring that underhood and underbody components remain below target temperatures. This is normally done with computational fluid dynamics, but in a full-vehicle simulation it is impractical to model the rotation of the fan blades using a sliding mesh approach. Thus, simplified models which capture the fan behavior are employed. In this paper, a body force-type fan modeling approach is adopted and assessed. Many industrial fan models are calibrated based on experiments or higher-fidelity simulations. This can slow the design process. The approach employed eliminates this step, requiring only fan geometry information and no a-priori performance data.
Technical Paper

Wear Performances of Gray Cast Iron Brake Rotor with Plasma Electrolytic Aluminating Coating against Different Pads

2020-10-05
2020-01-1623
Gray cast iron brake rotor experiences substantial wear during braking and contributes largely to the wear debris emissions. Surface coating on the gray cast iron rotor represents a trending approach dealing with the problems. In this research, a new plasma electrolytic aluminating (PEA) process was used for preparing an alumina-based ceramic coating with metallurgical bonding to the gray cast iron. Three different types of brake pads (ceramic, semi-metallic and non asbestos organic (NAO)) were used for tribotests. Performances of PEA coatings vs. different brake pad materials were comparatively investigated with respect to their coefficients of friction (COFs) and wear. The PEA-coated brake rotor has a dimple-like surface which promotes the formation of a thin transferred film to protect the rotor from wear. The transferred film materials come from the wear debris of the pads. The secondary plateaus are regenerated on the brake pads through compacting wear debris of the pads.
Technical Paper

Automated Generation of AUTOSAR ECU Configurations Using Xtend: Watchdog Driver Example

2020-04-14
2020-01-1335
Automotive Open System Architecture (AUTOSAR) is a system-level standard that is formed by the worldwide partnership of the automotive manufacturers and suppliers who are working together to develop a standardized Electrical and Electronic (E/E) framework and architecture for automobiles. The AUTOSAR methodology has two main activities: system configuration and the Electronic Control Unit (ECU) configuration. The system configuration is the mapping of the software components to the ECUs based on the system requirements. The ECU configuration process is an important part of the ECU software integration and generation. ECU specific information is extracted from the system configuration description and all the necessary information for the implementation such as tasks, scheduling, assignments of the runnables to tasks and configuration of the Basic Software (BSW) modules, are performed. The ECU configuration process involves configuring every single module of the AUTOSAR architecture.
Technical Paper

LiDAR and Camera-Based Convolutional Neural Network Detection for Autonomous Driving

2020-04-14
2020-01-0136
Autonomous vehicles are currently a subject of great interest and there is heavy research on creating and improving algorithms for detecting objects in their vicinity. A ROS-based deep learning approach has been developed to detect objects using point cloud data. With encoded raw light detection and ranging (LiDAR) and camera data, several basic statistics such as elevation and density are generated. The system leverages a simple and fast convolutional neural network (CNN) solution for object identification and localization classification and generation of a bounding box to detect vehicles, pedestrians and cyclists was developed. The system is implemented on an Nvidia Jetson TX2 embedded computing platform, the classification and location of the objects are determined by the neural network. Coordinates and other properties of the object are published on to various ROS topics which are then serviced by visualization and data handling routines.
Technical Paper

Lumped Parameter Thermal Network Modeling for Online Temperature Prediction of Permanent Magnet Synchronous Motor for Different Drive Cycles in Electric Vehicle Applications

2020-04-14
2020-01-0455
Electric vehicle is increasingly becoming popular and an alternative choice for the consumers because of its environment-friendly operation. Permanent magnet synchronous machines are widely and commonly used as traction motors since they provide higher torque and power density. High torque and power density mean higher current which eventually causes higher temperature rise in the motor. Higher temperature rise directly affects the motor output. Standard tests for UDDS (Urban Dynamometer Driving Schedule) and HWFET (Highway Fuel Economy Driving Schedule) drive cycles are used to determine performance of traction motors in terms of torque, power, efficiency and thermal health. Traction motors require high torque at low speed for starting and climbing; high power at high speed for cruising; wide speed range; a fast torque response; high efficiency over wide torque and speed ranges and high reliability.
Technical Paper

Performance Study of an Innovative Collaborative Robot Gripper Design on Different Fabric Pick and Place Scenarios

2020-04-14
2020-01-1304
Light-weighting fiber composite materials introduced to reduce vehicle mass and known as innovative materials research activities since they provide high specific stiffness and strength compared to contemporary engineering materials. Nonetheless, there are issues related automation strategies and handling methods. Material handling of flexible textile/fiber components is a process bottleneck and it is currently being performed by setting up multi-stage manual operations for hand layups. Consequently, the long-term research objective is to develop semi-automated pick and place processes for flexible materials utilizing collaborative robots within the process. The immediate research is to experimentally validate innovatively designed grippers for efficient material pick and place tasks.
Journal Article

Experimental Investigation of Axial Cutting of AA6061 Extrusions under a Tension Deformation Mode

2020-04-14
2020-01-0206
A plethora of applications in the transportation industry for both vehicular and roadside safety hardware, especially seatbelts, harnesses and restraints, rely on tensile loading to dissipate energy and minimize injury. There are disadvantages to the current state-of-the-art for these tensile energy absorbers, including erratic force-displacement responses and low tensile force efficiencies (TFE). Axial cutting was extensively demonstrated by researchers at the University of Windsor to maintain a stable reaction force, although exclusively under compressive loading. A novel apparatus was investigated in this study which utilized axial cutting under a tensile loading condition to absorb energy. A parametric scope was chosen to include circular AA6061 extrusions in both T4 and T6 temper conditions with an outer diameter of 63.5 mm and wall thickness of 3.18 mm.
Technical Paper

A Novel Hybrid Technique for Thermal Analysis of Permanent Magnet Synchronous Motor Used in Electric Vehicle Application

2020-04-14
2020-01-0464
Due to high torque and power density, permanent magnet synchronous motor (PMSM) has become the most viable candidate for electric vehicle (EV) traction application. However, to obtain such high torque and power density within a compact motor structure can cause a significant temperature rise within the motor while operating. As a result of high temperature rise, permanent magnet demagnetization may even occur within the motor. Thus, PMSM is susceptible to thermal instability. Therefore, to ensure thermal stability during varying operating conditions, thermal analysis is a mandatory procedure in addition to electromagnetic analysis during the design phase of the motor. In this paper, a computationally efficient numerical finite element analysis (FEA) process has been proposed for thermal analysis of PMSM.
Technical Paper

An Investigation of Near-Spark-Plug Flow Field and Its Effect on Spark Behavior

2019-04-02
2019-01-0718
In the recent decades, the emission and fuel efficiency regulations put forth by the emission regulation agencies have become increasingly stringent and this trend is expected to continue in future. The advanced spark ignition (SI) engines can operate under lean conditions to improve efficiency and reduce emissions. Under such lean conditions, the ignition and complete combustion of the charge mixture is a challenge because of the reduced charge reactivity. Enhancement of the in-cylinder charge motion and turbulence to increase the flame velocity, and consequently reduce the combustion duration is one possible way to improve lean combustion. The role of air motion in better air-fuel mixing and increasing the flame velocity, by enhancing turbulence has been researched extensively. However, during the ignition process, the charge motion can influence the initial spark discharge, resulting flame kernel formation, and flame propagation.
Technical Paper

A Comparison of the Mechanical Performance of AA6061-T6 Extrusions Subjected to Axial Crushing and Axial Cutting

2019-04-02
2019-01-1094
Conventional axially loaded energy absorbers dissipate kinetic energy through progressive folding. The significant fluctuations in load and high risk of transition to global bending are drawbacks that engineers have attempted to mitigate through several methods. A novel energy dissipation mechanism, referred to as axial cutting, utilizes thin-walled extrusions and a strengthened cutting tool to absorb energy in an axial impact. Compared to progressive folding, this can be achieved with minimal fluctuations in load during the deformation process. Based upon estimates from finite element models, a series of test cases were postulated where, for 8 and 10-bladed cutting scenarios, greater total energy absorption could be achieved through axial cutting than with progressive folding of geometrically similar extrusions. The specimens were AA6061 extrusions having T6 temper conditions that possessed 63.5 mm outer diameters and 1.5 mm wall thicknesses.
Technical Paper

A Preliminary Study of the Discharge Current and Spark Energy for the Multi-Coil Offset Strategy

2019-04-02
2019-01-0725
To overcome the unfavorable operation conditions caused by lean/diluted charges in modern Spark Ignited (SI) engines, various advanced ignition systems have been proposed in the past. Among them, the dual-coil and multi-coil Transistor Coil Ignition (TCI) systems with offset discharge strategy caused significant attention in literature because they can generate a continuous spark with high spark energy being delivered into the cylinder. Comparing with the dual-coil system, a multi-coil system is capable to apply more flexible control strategies and generate a higher discharge current. However, the spark energy and transfer efficiency of the multi-coil system are still worthy to investigate as they are important performance indicators for a TCI system. In this paper, the discharge characteristics of the dual-coil and triple-coil strategies under both quiescent and flow conditions were studied firstly by experimental methods.
X