Refine Your Search

Topic

Search Results

Technical Paper

A Simplified Circuit Model for the Emulation of Glow Phase during Spark Discharge

2018-04-03
2018-01-0092
The ever-growing demand to meet the stringent exhaust emission regulations have driven the development of modern gasoline engines towards lean combustion strategies and downsizing to achieve the reduction of exhaust emission and fuel consumption. Currently, the inductive ignition system is still the dominant ignition system applied in Spark Ignited (SI) engines. It is popular due to its simple design, low cost and robust performance. The new development in spark ignition engines demands higher spark energy to be delivered by the inductive ignition system to overcome the unfavorable ignition conditions caused by the increased and diluted in-cylinder charge. To meet this challenge, better understanding of the inductive ignition system is required. The development of a first principle model for simulation can help in understanding the working mechanism of the system in a better way.
Technical Paper

A Fuel Sensitive Ignition Delay Model for Direct Injection Diesel Engine Operating under EGR Diluted Conditions

2018-04-03
2018-01-0231
This empirical work investigates the impacts of thermodynamic parameters, such as pressure and temperature, and fuel properties, such as fuel Cetane number and aromatic contents on ignition delay in diesel engines. Systematic tests are conducted on a single-cylinder research engine to evaluate the ignition delay changes due to the fuel property differences at low, medium and high engine loads under different EGR dilution ratios. The test fuels offer a range of Cetane numbers from 28 to 54.2 and aromatic contents volume ratios from 19.4% to 46.6%. The experimental results of ignition delays are used to derive an ignition delay model modified from Arrhenius’ expression. Following the same format of Arrhenius’ equation, the model incorporates the pressure and temperature effects, and further includes the impacts of intake oxygen concentration, fuel Cetane number and aromatic contents volume ratio on the ignition delay.
Technical Paper

Load and Lubricating Oil Effects on Friction of a PEO Coating at Different Sliding Velocities

2017-03-28
2017-01-0464
Friction between the piston and cylinder accounts for large amount of the friction losses in an internal combustion (IC) engine. Therefore, any effort to minimize such a friction will also result in higher efficiency, lower fuel consumption and reduced emissions. Plasma electrolytic oxidation (PEO) coating is considered as a hard ceramic coating which can provide a dimpled surface for oil retention to bear the wear and reduce the friction from sliding piston rings. In this work, a high speed pin-on-disc tribometer was used to generate the boundary, mixed and hydrodynamic lubrication regimes. Five different lubricating oils and two different loads were applied to do the tribotests and the COFs of a PEO coating were studied. The results show that the PEO coating indeed had a lower COF in a lower viscosity lubricating oil, and a smaller load was beneficial to form the mixed and hydrodynamic lubricating regimes earlier.
Technical Paper

General and Galvanic Corrosion Behavior of Aluminized Ultra-High Strength Steel (UHSS) and Magnesium Alloy AZ35 Altered by Plasma Electrolytic Oxidation Coating Processes

2017-03-28
2017-01-0506
Ultra-high strength steel (UHSS) and magnesium (Mg) alloy have found their importance in response to automotive strategy of light weighting. UHSS to be metal-formed by hot stamping usually has a hot-dipped aluminum-silicon alloy layer on its surface to prevent the high temperature scaling during the hot stamping and corrosion during applications. In this paper, a plasma electrolytic oxidation (PEO) process was used to produce ceramic oxide coatings on aluminized UHSS and Mg with intention to further improve their corrosion resistances. A potentiodynamic polarization corrosion test was employed to evaluate general corrosion properties of the individual alloys. Galvanic corrosion of the aluminized UHSS and magnesium alloy coupling with and without PEO coatings was studied by a zero resistance ammeter (ZRA) test. It was found that the heating-cooling process simulating the hot stamping would reduce anti-corrosion properties of aluminized UHSS due to the outward iron diffusion.
Technical Paper

Fuel Burn Rate Control to Improve Load Capability of Neat n-Butanol Combustion in a Modern Diesel Engine

2016-10-17
2016-01-2301
This research work investigates the control strategies of fuel burn rate of neat n-butanol combustion to improve the engine load capability. Engine tests of homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) with neat n-butanol show promising NOx and smoke emissions; however, the rapid burn rate of n-butanol results in excessive pressure rise rates and limits the engine load capability. A multi-event combustion strategy is developed to modulate the fuel burn rate of the combustion cycle and thus to reduce the otherwise high pressure rise rates at higher engine load levels. In the multi-event combustion strategy, the first combustion event is produced near TDC by the compression ignition of the port injected butanol that resembles the HCCI combustion; the second combustion event occurs near 7~12 degrees after TDC, which is produced by butanol direct injection (DI) after the first HCCI-like combustion event.
Technical Paper

Transient Response of Minichannel Heat Exchanger Using Al2O3-EG/W Nanofluid

2016-04-05
2016-01-0229
A numerical study is performed to investigate the transient heat transfer and flow characteristics of aluminum oxide (Al2O3) nanoparticles dispersed in 50:50 ethylene glycol/water (EG/W) base fluid in a multipass crossflow minichannel heat exchanger. The time dependent thermal responses of the system in a laminar regime are predicted by solving the conservation equations using the finite volume method and SIMPLE algorithm. The transient regime is caused by a step change of nanofluid mass flow rate at the inlet of the minichannel heat exchanger. This step change can be analogous with a thermostat operation. In this study, three volume fractions up to 3 percent of Al2O3 nanoparticles dispersed to the base fluid EG/W are modeled and analyzed. In the numerical simulation, Al2O3-EG/W nanofluid is considered as a homogenous single-phase fluid. An analysis of the transient response for the variation of nanofluids volume concentrations is conducted.
Journal Article

Combustion Simulation of Dual Fuel CNG Engine Using Direct Injection of Natural Gas and Diesel

2015-04-14
2015-01-0851
The increased availability of natural gas (NG) in the U.S. has renewed interest in the application to heavy-duty (HD) diesel engines in order to realize fuel cost savings and reduce pollutant emissions, while increasing fuel economy. Reactivity controlled compression ignition (RCCI) combustion employs two fuels with a large difference in auto-ignition properties to generate a spatial gradient of fuel-air mixtures and reactivity. Typically, a high octane fuel is premixed by means of port-injection, followed by direct injection of a high cetane fuel late in the compression stroke. Previous work by the authors has shown that NG and diesel RCCI offers improved fuel efficiency and lower oxides of nitrogen (NOx) and soot emissions when compared to conventional diesel diffusion combustion. The work concluded that NG and diesel RCCI engines are load limited by high rates of pressure rise (RoPR) (>15 bar/deg) and high peak cylinder pressure (PCP) (>200 bar).
Journal Article

Impact of Fuelling Techniques on Neat n-Butanol Combustion and Emissions in a Compression Ignition Engine

2015-04-14
2015-01-0808
This study investigated neat n-butanol combustion, emissions and thermal efficiency characteristics in a compression ignition (CI) engine by using two fuelling techniques - port fuel injection (PFI) and direct injection (DI). Diesel fuel was used in this research for reference. The engine tests were conducted on a single-cylinder four-stroke DI diesel engine with a compression ratio of 18.2 : 1. An n-Butanol PFI system was installed to study the combustion characteristics of Homogeneous Charge Compression Ignition (HCCI). A common-rail fuel injection system was used to conduct the DI tests with n-butanol and diesel. 90 MPa injection pressure was used for the DI tests. The engine was run at 1500 rpm. The intake boost pressure, engine load, exhaust gas recirculation (EGR) ratio, and DI timing were independently controlled to investigate the engine performance.
Journal Article

A Zero-Dimensional Intake Dilution Tracking Algorithm for Real-Time Feedback on Exhaust Gas Recirculation

2015-04-14
2015-01-1714
This study describes a zero-dimensional algorithm for tracking the intake dilution in real-time. The inputs to the model are the oxygen concentration from the exhaust oxygen sensor, the manifold air pressure and temperature (MAP/MAT), the mass air flow (MAF) and the estimated fuel injected per cycle from the engine control module. The intake manifold, the exhaust manifold and EGR system are discretized into 3 volumes and the detailed concentrations of the gas species comprising the exhaust, EGR and intake streams are tracked at each time step (on a cycle-by-cycle basis). The model does not need the EGR ratio to be known in advance and is also applicable to oxygenated fuels such as ethanol. The model response is tuned to a multi-cylinder engine and the model output is empirically validated against a wide range of engine operations including load and EGR transients.
Technical Paper

Defect Classification of Adhesively Bonded Joints Using Pulse-Echo Ultrasonic Testing in Automotive Industries

2015-04-14
2015-01-0592
Amid all nondestructive testing (NDT) methods Ultrasound is considered the most practically feasible modality for quality assessment and detection of defects in automobile industry. Pattern recognition of the ultrasonic signals gives us important information about the interrogated object. This information includes size, geometric shape and location of the defect zone. However, this would not be straightforward to extract this information from the backscattered echoes due to the overlapping signals and also the presence of noise. Here in this study, we suggest a new method for classification of different defects in inspection of adhesively bonded joint. At the first step of this method, the problem of parameter estimation of the reflected echoes is defined in a Maximum Likelihood Estimation (MLE) framework. Then a space alternating generalized Expectation Maximization (SAGE) algorithm is implemented to solve the MLE problem.
Technical Paper

New MAC Technologies: Fuel Efficiency Effect in Real Driving of the Air Intake Flap Management

2015-04-14
2015-01-1609
Following the development of new technologies in Vehicle Thermal Management aiming to both enhancing the MAC System efficiency and reducing the thermal load to be managed, a prediction tool based on the AMEsim platform was developed at Advanced PD EMEA. This tool is dedicated to predict the effect of the implementation of sensors monitoring both the relative humidity and the carbon dioxide (CO2) concentration (taking into account passengers' generated moisture and CO2). This model implemented with the usual comfort inputs (CO2 and RH acceptable ranges) considers the system variables influencing the comfort and predicts the increase of both RH and CO2 concentration in the cabin compartment in any driving cycle depending on the number of occupants.
Technical Paper

Clean Combustion in a Diesel Engine Using Direct Injection of Neat n-Butanol

2014-04-01
2014-01-1298
The study investigated the characteristics of the combustion, the emissions and the thermal efficiency of a direct injection diesel engine fuelled with neat n-butanol. Engine tests were conducted on a single cylinder four-stroke direct injection diesel engine. The engine ran at 6.5 bar IMEP and 1500 rpm engine speed. The intake pressure was boosted to 1.0 bar (gauge), and the injection pressure was controlled at 60 or 90 MPa. The injection timing and the exhaust gas recirculation (EGR) rate were adjusted to investigate the engine performance. The effect of the engine load on the engine performance was also investigated. The test results showed that the n-butanol fuel had significantly longer ignition delay than that of diesel fuel. n-Butanol generally led to a rapid heat release pattern in a short period, which resulted in an excessively high pressure rise rate. The pressure rise rate could be moderated by retarding the injection timing and lowering the injection pressure.
Technical Paper

Computational Study of Reactivity Controlled Compression Ignition (RCCI) Combustion in a Heavy-Duty Diesel Engine Using Natural Gas

2014-04-01
2014-01-1321
Reactivity controlled compression ignition (RCCI) combustion employs two fuels with a large difference in auto-ignition properties that are injected at different times to generate a spatial gradient of fuel-air mixtures and reactivity. Researchers have shown that RCCI offers improved fuel efficiency and lower NOx and Soot exhaust emissions when compared to conventional diesel diffusion combustion. The majority of previous research work has been focused on premixed gasoline or ethanol for the low reactivity fuel and diesel for the high reactivity fuel. The increased availability of natural gas (NG) in the U.S. has renewed interest in the application of compressed natural gas (CNG) to heavy-duty (HD) diesel engines in order to realize fuel cost savings and reduce pollutant emissions, while increasing fuel economy. Thus, RCCI using CNG and diesel fuel warrants consideration.
Technical Paper

A Reconfigurable Algorithm for Identifying and Validating Functional Workspace of Industrial Manipulators

2014-04-01
2014-01-0734
Industrial robotic arms and manipulators are systems that offer technological advances in automation, production, and logistical processes. Therefore, it is vital to understand and analyze the reachability and dexterity of such manipulators. This paper presents a reconfigurable algorithm for evaluation and 3D visual representation of the total workspace and singularity space of two and three degrees of freedom open-ended kinematic chains. A manipulator's performance is greatly depreciated at or near singular regions which may occur as subset(s) in its complete workspace. It is therefore crucial to understand the functional workspace of a manipulator for an enhanced performance in an industrial setting. The implementation of this algorithm requires two inputs namely; the joint type(s), rotational (R) or translational (T), and the Denavit-Hartenberg (D-H) parameters of the manipulator.
Technical Paper

Effect of Surface Roughness and Sliding Velocity on Tribological Properties of an Oxide-Coated Aluminum Alloy

2014-04-01
2014-01-0957
Aluminum engines have been successfully used to replace heavy gray cast engines to lighten the car's weight and reduce the fuel consumption. To overcome the aluminum alloys' poor wear resistance, cast iron liners and thermal spraying coatings were used as cylinder bore materials for wear protection. A plasma electrolytic oxidation (PEO) technique had also been proposed to produce an oxide coating on aluminum cylinder bore. The oxide coating can have a low coefficient of friction (COF) and minimum wear shown in the lab tests. To conserve more fuel, the stopping and restarting system was introduced when the vehicle was forced to stop immediately for a short time. When the engine was forced to stop and restart, the reciprocating speed of the piston was very slow, and the friction between the piston and the cylinder was high. In this research, a pin-on-disc tribometer was used to investigate tribological behavior of the oxide coating on an aluminum alloy.
Journal Article

Fleet Vehicle Idling - Are Supplemental Hybrid Idling Reduction Systems the Answer?

2014-01-15
2013-01-9095
Environmental concerns and rising fuel costs are driving Ontario's municipalities and fleet operators to consider alternative vehicle technologies. Elevated fuel consumption and air emissions are attributed to the unique operations of fleet vehicles and in particular, during idling. While drivers of passenger vehicles may have the option of simply not idling, fleet and emergency vehicle operators, may need to keep the vehicle operating to supply power to critical onboard equipment. These demands may be exacerbated during seasonal, temperature extremes. However, prolonged idling can impose significant environmental and economic burdens. Hybrid vehicles have yet to be utilized widely by Ontario's fleets, but there are other approaches to reduce emissions, including alternative “green” technologies to operate in-vehicle equipment and maintain fleet vehicle capabilities instead of idling.
Technical Paper

Effects of Fuel Composition Variations (H2:CO) for Biomass Gas HCCI Combustion

2012-04-16
2012-01-1112
Research regarding higher efficiency engines and renewable energy has lead to HCCI engine technology as a viable option with the ability to utilize a variety of fuels. With a larger focus on environmental effects the ability of HCCI engines to produce low levels of NOx and potentially other combustion products is another attractive feature of the technology. Biomass gas as a renewable primary fuel is becoming more predominant regarding internal combustion engine research. The simulated fuel in this study replicates compositions derived from real-world gasification processes; the focus in this work corresponds to fuel composition variations and their effects regarding combustion phasing and performance. There are three biomass gas fuel compositions investigated in this study. All compositions consisted of combustibles of CH₄, CO, and H₂ accompanied by CO₂ then balanced with N₂. The CH₄ and CO₂ constituents of each fuel mixture are held constant at 2% and 5% respectively.
Technical Paper

Power Management Methodologies for Fuel Cell-Battery Hybrid Vehicles

2010-04-12
2010-01-0849
The implementation of fuel cell-battery hybrid vehicles requires a supervisory control strategy that manages the power distribution between the fuel cell and the energy storage device (i.e., battery). Several advanced control methods have already been developed and published in literature. However, most control methods have been developed for different vehicle types and using different mathematical models. The performance of these power management methods have not been directly compared for the same application. This study aims at obtaining direct analytical comparisons, which will provide useful insight in selecting a power management method for fuel cell-battery hybrid vehicles.
Technical Paper

Dynamic Stability Analysis of Coupled Vehicles for General and Military Applications

2010-04-12
2010-01-0638
The paper describes a study conducted by the University of Windsor Vehicle Dynamics and Control Research Group into the stability of coupled vehicles, e.g., truck-trailer combinations. Several instabilities associated with truck-trailer combinations have been well documented, and have been predicted using mathematical models. Despite having relatively low complexity the classic truck-trailer model, a simple two body, three degree of freedom, linear model has been used extensively in coupled vehicle stability analyses. The aim of the presented work was to extend the conventional coupled vehicle analysis with a set of more elaborate mathematical models evaluating various vehicle configurations. Using in-house multibody dynamics software the linearized equations of motion of three dimensional models were automatically generated for various coupled vehicle configurations with general and military applications. Stability analyses were conducted over a range of expected operating speeds.
Journal Article

Efficacy of EGR and Boost in Single-Injection Enabled Low Temperature Combustion

2009-04-20
2009-01-1126
Exhaust gas recirculation, fuel injection strategy and boost pressure are among the key enablers to attain low NOx and soot emissions simultaneously on modern diesel engines. In this work, the individual influence of these parameters on the emissions are investigated independently for engine loads up to 8 bar IMEP. A single-shot fuel injection strategy has been deployed to push the diesel cycle into low temperature combustion with EGR. The results indicated that NOx was a stronger respondent to injection pressure levels than to boost when the EGR ratio is relatively low. However, when the EGR level was sufficiently high, the NOx was virtually grounded and the effect of boost or injection pressure becomes irrelevant. Further tests indicated that a higher injection pressure lowered soot emissions across the EGR sweeps while the effect of boost on the soot reduction appeared significant only at higher soot levels.
X