Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Art Meets Automotive: Design of a Curve-Adaptive Origami Gripper for Handling Textiles on Non-Planar Mold Surfaces

2024-04-09
2024-01-2575
The handling of flexible components creates a unique problem set for pick and place automation within automotive production processes. Fabrics and woven textiles are examples of flexible components used in car interiors, for air bags, as liners and in carbon-fiber layups. These textiles differ greatly in geometry, featuring complex shapes and internal slits with varying material properties such as drape characteristics, crimp resistance, friction, and fiber weave. Being inherently flexible and deformable makes these materials difficult to handle with traditional rigid grippers. Current solutions employ adhesive, needle-based, and suction strategies, yet these systems prove a higher risk of leaving residue on the material, damaging the weave, or requiring complex assemblies. Pincer-style grippers are suitable for rigid components and offer strong gripping forces, yet inadvertently may damage the fabric, and introduce wrinkles / folded-over edges during the release process.
Technical Paper

Dynamic Simulation of Steering Crimp Ring Assembly Process Using CAE and its Correlation with Testing

2024-04-09
2024-01-2733
The process of assembling the bearing and crimp ring to the steering pinion shaft is intricate. The bearing is pressed into its position via the crimp ring, which is tipped inward and fully fitted into a groove on the pinion shaft. Only when the bearing is pressed to a low surface on the pinion shaft, the caulking force for the crimp ring is achieved. The final caulking distance for the crimp ring confirms the proper bearing position. Simulating this transient fitting process using CAE is a challenging topic. Key factors include controlling applied force, defining contact between bearing and pinion surface, and defining contact between crimp ring and bearing surface from full close to half open transition. The overall CAE process is validated through correlation with testing.
Technical Paper

Virtual Chip Test and Washer Simulation for Machining Chip Cleanliness Management Using Particle-Based CFD

2024-04-09
2024-01-2730
Metal cutting/machining is a widely used manufacturing process for producing high-precision parts at a low cost and with high throughput. In the automotive industry, engine components such as cylinder heads or engine blocks are all manufactured using such processes. Despite its cost benefits, manufacturers often face the problem of machining chips and cutting oil residue remaining on the finished surface or falling into the internal cavities after machining operations, and these wastes can be very difficult to clean. While part cleaning/washing equipment suppliers often claim that their washers have superior performance, determining the washing efficiency is challenging without means to visualize the water flow. In this paper, a virtual engineering methodology using particle-based CFD is developed to address the issue of metal chip cleanliness resulting from engine component machining operations. This methodology comprises two simulation methods.
Technical Paper

INCORPORATING METHODS OF GRAPHENE IN POLYMERIC NANOCOMPOSITES TOWARDS AUTOMOTIVE APPLICATIONS -A BRIEF REVIEW

2024-01-08
2023-36-0015
This work aims to develop a PA6 nanocomposite with glass fiber (GF) and graphene nanoplatelets (GNPs) focusing on automotive parts application. Polyamide 6 is a semi-crystalline polymer that exhibits high fatigue and flexural strength, making it viable for rigorous applications. Along with the improved electrical, mechanical, thermal, and optical performance achieved in PA6 and GF-based nanocomposites, they can fill complex geometries, have great durability, and are widely utilized due to their capacity of reducing the weight of the vehicle besides a cost reduction potential. The glass fiber is a filamentary composite, usually aggregated in polymeric matrices, which aims to amplify the mechanical properties of polymers, mainly the tensile strength in the case of PA6.
Technical Paper

Investigation of the Impact of Fiberglass on the Performance of Injected Thermoplastic Automotive Parts

2024-01-08
2023-36-0046
Manufacturing processes impact many factors on a product. Depending on the selected method, development time, part performance and cost are affected. In the automotive sector, there is a growing demand for weight reduction due to the advent of electrification and the greenhouse gas emission regulations. In addition, geometric complexity is a challenging factor for the feasibility of mass production of parts. In this scenario, plastic materials are a very interesting option for application in various vehicle parts, since these materials can be molded by injection, vacuum forming, among others, while maintaining good mechanical properties. Almost a third of a vehicle’s parts are polymeric, making the development of these materials strategic for car manufacturers. This article investigates the impact of the presence of fiberglass in a thermoplastic automotive body part.
Technical Paper

Polyurethane foam coated with organic filers for sound absorption: A briefre view

2024-01-08
2023-36-0088
Polyurethane (PU) foams are versatile in automotive applications for sound absorption, due to their superior acoustic-absorbing properties, vibration damping and robustness, and seat cushioning products due to their easiness of manufacturing process and cost-effectiveness. In recent studies, micro- and nano-particles were used to improve sound absorption efficiency, these fillers help to form interconnected pore structures in the foam matrix, and this interconnection of pores is advantageous in dissipating heat generated from wave friction with the air. Some of the micro- and nano-particles used are natural fibers (like cellulose, fir, palm), silica, clay, graphene and derivatives, zeolite, and others. This review is an overview of recent advances in the incorporation of fillers in PU foams and the influence they have on the sound absorption capacity of the foams.
Technical Paper

Residual Stress Induced Fretting Fatigue during Fatigue Testing for Materials Produced by Laser Powder Bed Fusion Process

2023-04-11
2023-01-0894
Fretting fatigue was observed in standard cylindrical fatigue samples at the regions in contact with the grips of the test frames during fatigue testing for AlSi10Mg aluminum alloy produced by laser powder bed fusion process (L-PBF). The failure of the fatigue sample grips occurs much earlier than the failure of the gauge section. This results in a damaged sample and the sample cannot be reused to continue the test. This type of failure is rarely seen in materials produced by traditional manufacturing processes. In this study, X-ray residual stress analysis was performed to understand the cause of failure for L-PBF AlSi10Mg with the as-built surface condition. The result indicates that the fretting fatigue failure was caused by the strong tensile residual stress in the as-built state combining with the fretting wear between the sample and the grip. A few potential solutions to avoid the fretting fatigue failure were investigated.
Technical Paper

Exterior-Interior Interface Connection Design for Optimal Performance in Automotive Systems

2023-04-11
2023-01-0935
The vehicle instrument panel (IP) system has several interactions with the surrounding components such as the Dash, Cowl, Cross Car Beam (CCB), Floor, Body Side etc. With such interactions comes different loadings, usage scenarios, interfaces and design challenges to overcome. For the specific case of the IP to Cowl & Dash interfaces, the position and performance in different load cases, such as, but not limited to, vibration and heat expansion loading as well as the assembly process. A design solution is required to enhance the performance in all these scenarios while maintaining the cost, weight & complexity as low as possible. This paper describes the development process of an optimized solution with a multi-disciplinary approach using advanced computer aided engineering (CAE) optimization tools, which involved performance in multiple virtual evaluations and mass.
Journal Article

Development of a Novel High Strength Aluminum-Cerium Based Rotor Alloy for Electric Vehicle Induction Motor Applications

2023-04-11
2023-01-0878
To increase vehicle range, light weighting of electric vehicles has been extensively researched and implemented by using aluminum intensive solutions. With regards to traction motors, aluminum alloys that have a desired combination of high electrical conductivity and strength are required for high power output and efficiency. In this research, a novel Al-Ce based alloy, with minor additions of Si and Mg for strengthening, was investigated in different heat treatment tempers to maximize mechanical properties while maintaining a high electrical conductivity. This new alloy system appears to have addressed the classic conundrum of the inverse relationship of mechanical performance verses electrical conductivity for traditional aluminum alloy systems. The results suggest that the Al-Ce-Si-Mg alloy had yield strength in excess of 120 MPa and electrical conductivity of at least 50 %IACS in the T5 and T6 conditions.
Journal Article

On the Development of CFD Methodology for Free-Falling Varnish Stream Modeling to Support EV Motor Manufacturing

2023-04-11
2023-01-0158
When manufacturing the stators in EV motors, stator wires are first coated with a layer of resin to provide primary insulation. After winding, impregnating varnish fills all voids within the windings and between the windings and lamination. In addition to electrically insulating the copper wires, another function of the varnish fill is to mechanically secure the copper wires from movement. The process is not complicated in terms of physics. In essence, the mechanics of the varnish flow is the balance of inertia force, viscous force, gravity and surface tension. However, understanding the fluid dynamics of the varnish flow is critical to predicting the quality of the varnish fill, which has a tremendous impact on motor performance. With the advancement of computational fluid dynamics (CFD), the industry can benefit greatly if the varnish trickling process can be tuned, without physical tryouts, to achieve optimal fill.
Technical Paper

Wear and Corrosion Behaviours of PEA Alumina Coatings on Gray Cast Iron

2022-03-29
2022-01-0329
Alumina (Al2O3) thin film coatings are applied on Al alloys using Plasma Electrolytic Oxidation (PEO) method to reduce the wear and corrosion problems. Plasma Electrolytic Aluminating (PEA) is a technique which could generate Alumina coatings on cast iron, mild steel and copper alloys. In this study, the aim is to explore the anti-wear and anti-corrosion behaviours of PEA Alumina coatings on gray cast iron. The dry sliding tribology test data was obtained from Pin-on-Disk (POD) tests against SAE 52100 steel and Tungsten Carbide (WC) counterfaces. Comparing with the PEO Alumina coatings, the PEA Alumina coating has much lower Coefficient of Friction (COF) and less wear. The microstructure, chemical composition and phase composition of this coating were investigated with Scanning Electron Microscope (SEM), Energy-Dispersive X-Ray Spectroscopy (EDX) and X-Ray Diffraction (XRD), respectively. There was FeO (or FeAl2O4) found on the PEA Alumina coating.
Technical Paper

Electrical Insulation Properties of Alumina Coatings on SAE 52100 Bearing Steel

2022-03-29
2022-01-0726
In recent years, bearing electrical failures have been a significant concern in electric cars, restricting electric engine life. This work aims to introduce a coating approach for preventing electrical erosion on 52100 alloy steel samples, the most common material used on manufacturing bearings. This paper discusses the causes of shaft voltage and bearing currents, and summarizes standard electrical bearing failure mechanisms, such as morphological damages and lubrication failures. Alumina coatings are suitable for insulating the 52100 alloy steel samples because alumina coatings provide excellent insulation, hardness, and corrosion resistance, among other characteristics. The common method to coat an insulated alumina coating on the bearing is thermal spraying, but overspray can cause environmental issues, and the coating procedures are costly and time-consuming.
Journal Article

Investigation of Al2O3-Ni Coated Cast Iron Brake Rotors Under Modified Brake Dynamometer Test Standards

2022-03-29
2022-01-0273
Due to the reduced or less-frequent usages of the friction brakes and the lower brake rotor temperature on electrical vehicles (EV), corrosion would much likely occur on brake rotors. Using hard braking to clean the corroded rotor surfaces often leads to extra rotor surface wear. Improvement in corrosion and wear resistance is an important technological topic to brake rotors for EVs. Many original equipment manufacturers (OEM) and their suppliers are exploring surface treatments including laser cladding and thermal spray processes on cast iron rotors to combat the corrosion issues. However, mentioned surface coating processes increase the cost of brake rotors and there is a need to search for cost-effective coating processes. In this research, a new Al2O3-Ni composite coating was proposed for preparation of a commercial cast iron brake rotor using plasma electrolytic aluminating (PEA) followed by electroless nickel plating (ENP) processes.
Technical Paper

Developments of Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) Project

2022-03-29
2022-01-0341
The Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) is a project that developed structural commercial vehicle suspension components in high volume utilising hybrid materials and joining techniques to offer a viable lightweight production alternative to steel. Three components were selected for the project:- Front Subframe Front Lower Control Arm (FLCA) Rear Deadbeam Axle
Technical Paper

An Investigation of the Simulation of Sintering Distortion in a 316L Part Manufactured Using Bound Metal Deposition 3D Printing

2022-03-29
2022-01-0346
Metal binderjetting (MBJ) and bound metal deposition (BMD) are high throughput additive manufacturing process that have the potential to meet the needs of automotive volume production. In many cases, these processes require a sintering post-process to meet final dimensions. Because the sintering stage is performed free standing (i.e. without the use of tooling) and can involve up to a 20% dimensional change from green part to the final part shape, part distortion can be a concern. In this study, the sintering stage of a bridge geometry was simulated under different parameter settings using a Finite Element Analysis. The sensitivity of the simulation to various process parameter inputs was examined. Physical parts were then produced in 316L using a bound metal deposition and sintering process and compared to prediction. The sintering simulation indicated good agreement with experiment for some dimensions but highlighted the need for additional analysis.
Journal Article

Improving Keyhole Stability during Laser Welding of AA5xxx Alloys

2022-03-29
2022-01-0247
Laser welding of the magnesium-bearing AA5xxx aluminum alloys is often beset by keyhole instability, especially in the lap through joint configuration. This phenomenon is characterized by periodic collapse of the keyhole leaving large voids in the weld zone. In addition, the top surface can exhibit undercut and roughness. In full penetration welds, keyhole instability can also produce a spikey root and severe top surface concavity. These discontinuities could prevent a weld from achieving engineering specification compliance, pose a craftsmanship concern, or reduce the strength and fatigue performance of the weld. In the case of a full penetration weld, a spikey root could compromise part fit-up and corrosion protection, or damage adjacent sheet metal, wiring, interior components, or trim.
Technical Paper

U-Bolt Pre-Load and Torque Capacity Determination Using Non-Linear CAE

2022-03-29
2022-01-0773
This paper presents a method of using CAE to determine the pre-load and torque applied to a U-Bolt rear Spring Seat. In this paper it is review two U-bolt design and the stresses generated by the pre-load torque applied, based in this study a process to determine the minimal preload and the torque is discussed. By this process it is possible to determine the minimum Torque and the correct pre-load in the U-Bolt element and assuring the correct fastening of the components avoiding over stress in the Bar elements.
Journal Article

Low-Cost Magnesium Alloy Sheet Component Development and Demonstration Project

2022-03-29
2022-01-0248
Most of the applications of magnesium in lightweighting commercial cars and trucks are die castings rather than sheet metal, and automotive applications of magnesium sheet have typically been experimental or low-volume serial production. The overarching objective of this collaborative research project organized by the United States Automotive Materials Partnership (USAMP) was to develop new low-cost magnesium alloys, and demonstrate warm-stamping of magnesium sheet inner and outer door panels for a 2013 MY Ford Fusion at a fully accounted integrated component cost increase over conventional steel stamped components of no more than $2.50/lb. saved ($5.50/kg saved). The project demonstrated the computational design of new magnesium (Mg) alloys from atomistic levels, cast new experimental alloy ingots and explored thermomechanical rolling processes to produce thin Mg sheet of desired textures.
Technical Paper

A Multi-Physics Approach to Predict High Frequency NVH in Oil Pump Drives

2021-08-31
2021-01-1099
NVH problems are often the result of mechanisms that originate through complex interactions between different physical domains (flow, structural/mechanical, control logic, etc.). Parallel-shaft spur gears subject to light torque loading caused by the dynamic pressure fluctuation of the oil used in engine accessory or transmission pump drives are likely to exhibit unusual gear whine associated with higher order meshing harmonics, even when the tooth profile has a high-quality grade finishing. Therefore, accurate integrated models are becoming a requirement to solve modern NVH problems.
Technical Paper

Maximized Energy Absorption and an Investigation on Practical Limitations for the Axial Cutting and Hybrid Cutting/Clamping Deformation Modes

2021-04-06
2021-01-0285
The axial cutting deformation mode is a novel alternative to progressive folding, the current state-of-the-art, where the cutting scheme exhibits more favorable mechanical performance. By splitting the extrusion into multiple evenly spaced and near-identical petals a highly consistent force response can be achieved. Maximizing the energy absorbing capacity of a sacrificial energy absorber is a fundamental design challenge in the field of crashworthiness. Generating hybrid deformation modes by simultaneously combining multiple deformation mechanisms into a single safety system is a promising technique to achieve high capacity energy dissipation. However, these systems tend to be susceptible to transitioning deformation modes (e.g. from progressive folding to global bending) since the sacrificial material is often loaded at or near its capacity.
X