Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Geometric Analysis of a Dual Clutch Lever-Based Electromechanical Actuator with Application to Actuator Dynamics Modelling

2012-04-16
2012-01-0631
This paper presents a practical and straightforward method of identifying geometry parameters of a cam-like lever-based electromechanical dual-clutch actuator, with application to actuator dynamics model parameterization. The lever-based actuator resembles a cam mechanism in that a movable roller fulcrum, driven by an electromotor through a ball-screw, drives the lever by direct contact along the lever profile. This necessitates the identification of the lever profile geometry in order to accurately model the mechanism dynamics. The identification method is based on the measured basic lever mechanism dimensions, experimentally recorded input-output response of the lever mechanism during unloaded operation, observed geometric constraints satisfied during operation, and common CAD software tools to conduct a CAD-based mechanism synthesis and position analysis.
Journal Article

Design of Test Rigs for a Dry Dual Clutch and its Electromechanical Actuator

2012-04-16
2012-01-0807
Dual Clutch Transmissions with dry electromechanically actuated clutches have emerged on the market recently. In order to provide their favorable operation in terms of the clutch torque control, it is very important to have a good knowledge on the system behavior related to the actuator dynamics, the dry friction coefficient behavior, and the thermal dynamics. This paper describes two test rigs developed to support the research work on a dry dual clutch with a lever-based electromechanical actuation system. The first test rig (actuation system test rig) provides a basis for a comprehensive multi-step identification of the actuation system parameters and characterization of the overall system behavior. This test rig includes a modified dual clutch assembly including a built-in sensor for the purpose of direct normal force measurement.
Journal Article

Adaptive EKF-Based Estimator of Sideslip Angle Using Fusion of Inertial Sensors and GPS

2011-04-12
2011-01-0953
This paper presents an adaptive extended Kalman filter (EKF)-based sideslip angle estimator, which utilizes a sensor fusion concept that combines the high-rate inertial sensors measurements with the low-rate GPS velocity measurements. The sideslip angle estimation is based on a vehicle kinematic model relying on the lateral accelerometer and yaw rate gyro measurements. The vehicle velocity measurements from low-cost, single antenna GPS receiver are used for compensation of potentially large drift-like estimation errors caused by inertial sensors offsets. Adaptation of EKF state covariance matrix ensures a fast convergence of inertial sensors offsets estimates, and consequently a more accurate sideslip angle estimate.
Technical Paper

Design and Comparative Study of Yaw Rate Control Systems with Various Actuators

2011-04-12
2011-01-0952
The vehicle dynamics control systems are traditionally based upon utilizing wheel brakes as actuators. However, there has been recently strong interest in the automotive industry for introduction of other vehicle dynamics actuators, in order to improve the overall vehicle stability, responsiveness, and agility features. This paper considers various actuators such as active rear and central differentials and active front and rear steering, and proposes design of related yaw rate control systems. Different control subsystems such as reference model, feedback and feedforward control, allocation algorithm, and time-varying controller limit are discussed. The designed control systems are verified and compared by computer simulation for double lane change and slalom maneuvers.
Technical Paper

Experimental Analysis of Potentials for Tire Friction Estimation in Low-Slip Operating Mode

2006-04-03
2006-01-0556
This paper presents a detailed experimental analysis of potentials for road condition estimation based on the tire static curve gradient in the low-slip region, and the damping of the 40 Hz tire vibration mode. An experimental vehicle equipped with four standard ABS sensors (44 pulses/rev), two special high-resolution wheel speed sensors (512 pulses/rev), and a halfshaft torque sensor was utilized for collecting the experimental data. The test data were recorded on a test track characterized by different road conditions such as dry concrete, wet and dry ice, and wet and dry snow.
X