Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Experimental Investigation on the Mechanical Properties of Date Seed and Neem Gum Powder Added Natural Composites

2024-02-23
2023-01-5150
The experimental investigation aims to improve natural composite materials aligned with feasible development principles. These composites can be exploited across several industries, including the automobile and biomedical sectors. This research employs date seed powder and neem gum powder as reinforcing agents, along with polyester resin as the base material. The fabrication route comprises compression moulding, causing the production of the natural composite material. This study focuses extensively on mechanical characteristics such as tensile strength, flexural strength, hardness, and impact resistance to undergo comprehensive testing. Furthermore, the chemical properties of the composites are examined using the FTIR test to gain understanding by integrating different proportions of date seed powder (5%, 10%, 15%, and 20%) and neem gum powder (0%, 3%, 6%, and 9%) in the matrix phase.
Technical Paper

Characterization of AlSi10Mg Alloy Produced by DMLS Process for Automotive Engine Application

2019-10-11
2019-28-0134
Considerable weight of an automobile is constituted by the engine and there is scope for improvement in fuel efficiency and emission control through optimization of weight in the engine. In this work, AlSi10Mg alloy produced by the direct metal laser sintering (DMLS) is suggested for engine application which is a lightweight aluminum alloy. Mechanical properties like tensile strength, compressive strength, and hardness of both cast and DMLS manufactured alloy are compared followed by analysis of SEM images of tensile test fractured surfaces. Reciprocating wear test is carried out for one lakh cycles at 125°C temperature with SAE 40 grade oil as lubricant. Co-efficient of friction (COF), wear rate of the cast and DMLS manufactured samples are compared. Wear patterns are analyzed using SEM images of the wear tracks.
Technical Paper

Mechanical and Corrosion Behaviour of Al 7075 Composite Reinforced with TiC and Al2O3 Particles

2019-10-11
2019-28-0094
Various research regarding new types of fabrication and modifications of Aluminium alloy to improve the existing properties are going on. The wide range application of aluminium alloy is in aerospace and Automobile Industries. The demand for this material improved by mechanical properties with little to zero increment in weight. The current work is based on the fabrication of hybrid aluminium metal matrix composites with the addition of TiC (Titanium Carbide) and Al2O3 (Aluminium Oxide) reinforcement particle using stir casting technique. Three types of hybrid composite samples were prepared based on the weight percentage 5% Al2O3+0% TiC (sample-1), 8% Al2O3 + 12% TiC (sample-2), 20% Al2O3+15% TiC (sample-3). The objective of the study is to analyze the mechanical and corrosion properties of the hybrid composite with the influence of the reinforcement and varying the weight fraction of the particles.
Technical Paper

Investigation on Microstructure and Mechanical Properties of Corrosion Resistance Alloy C-2000 Fabricated by Conventional Arc Welding Technique

2019-10-11
2019-28-0177
In the current work the metallurgical and tensile properties of the weld joints of alloy C-2000 were investigated. Welding technique employed in this study is Tungsten Inert Gas Welding (TIG) and Pulsed Current Tungsten Inert Gas (PC-TIG) welding with autogenous mode and Ni-Cr-Mo rich ERNiCrMo-10 filler wire. The results show that PC-TIG weldment obtained the refined microstructure compared to the TIG weldment. Energy dispersive spectroscopy (EDS) showed the extent of Cr segregation was observed in all the weldments. PC-TIG welding shows reduced segregation compared to the corresponding TIG. X-ray diffraction (XRD) corroborated the existence of Ni3Cr2 phases in the weld fusion zone. Tensile test results show the PC-TIG weldment obtained marginally higher tensile properties comparing over the corresponding TIG weldment. The strength of the weldments is inferior in all cases in comparison to base metal.
Technical Paper

Investigation of Metallurgical and Mechanical Properties of Hastelloy X by Key-Hole Plasma Arc Welding Process

2019-10-11
2019-28-0152
This research work describes the effect of microsegregation, microstructure and tensile strength of the Hastelloy X weldment produced by keyhole plasma arc welding (K-PAW). Weld joint was obtained in a single pass without the addition of filler wire. The significant results obtained in this research work are (i) fine equiaxed dendrite was detected in the weld centre due to lesser heat input (HI) along with the faster solidification attained in K-PAW (ii) The existence of secondary precipitates in the interdendritic boundary was identified by the scanning electron microscope (SEM) analysis (iii) Energy dispersive X-ray spectroscope (EDS) revealed the Cr and Mo microsegregation in interdendritic boundary of the weld zone (iv) X-ray diffraction (XRD) analysis confirmed the Mo-rich P phase and Cr-rich M23C6 phase. The observed tensile strength of weldment is 6.14 % inferior to base metal.
Technical Paper

Aerodynamic Analysis on under Body Drag and Vehicle Performance of Active Front Spoiler for High CG Vehicles

2019-10-11
2019-28-0025
Vehicle aerodynamic drag reduction is the effective technique to enhance the fuel economy, performance and top speed of a vehicle. Out of the total drag, the underbody drag contributes about 40-50% by the parts like wheel arch, wheel housing, and the wheels. This further increases in the case of vehicles with higher CG. Thus, it seems logical to focus attention on the underbody aerodynamic drag reduction. In this study, an active spoiler is placed towards the front end of the vehicle which will divert the air flow from the front towards the radiator. The active spoiler revolves according to the signals received from the radar sensors placed at the lower end to detect obstacles which will prevent it from damage. The aim of the study is to examine the effect of the air flow diversion on underbody drag. The effect of air flow diversion on fuel consumption, radiator effectiveness and top speed is numerically evaluated.
Technical Paper

Methodology Development for External Aerodynamic Evaluation of a Bus and Its Impact on Fuel Economy along with Experimental Validation

2019-01-09
2019-26-0294
The objective of this study is to develop, demonstrate and validate the methodology of external aerodynamic analysis of a State Road Transport bus for prediction of drag coefficient and its impact on fuel consumption with experimental validation. It has been verified that vehicle consumes around 40% of the available engine power to overcome the air drag. This gives us a huge scope to study the effect of aerodynamic drag. Baseline model of State Road Transport Bus was evaluated for estimating fuel consumption using Computational Fluid dynamics (CFD) methodology. The CFD results were validated with the experimental data with less than 10% deviation. Bus design was optimized with an objective of reducing the fuel consumption with parameters like angle of windshield, rounding and tapering corners and rear draft angle. Optimized bus design is also ensured to meet functional specifications as per AIS052.
Technical Paper

Experimental Investigations on the Effect of Alcohol Addition on Performance, Emission and Combustion Characteristics of LPG Fuelled Lean Burn Spark Ignition Engine

2019-01-09
2019-26-0085
Rising energy demands, ecological deterioration and diminution of fossil fuels has necessitated the researchers to search for alternatives. With alternate fuels like Liquefied Petroleum Gas (LPG), hydrogen and alcohol based fuels, it is easier to substitute with the present engine without many alterations. Excellent chemical properties of these fuels make them favorable for lean burn operation which makes it a cost effective option to achieve goals of better fuel economy and controlled emissions. In this regard, experimental studies were carried out to examine the effects of LPG with different proportions of alcohols like ethanol and methanol (5, 10 and 20%) on the performance, emission and combustion characteristics of a single cylinder SI engine operated at a constant speed of 1500 rpm with a optimized compression ratio of 10.5:1 under full throttle opening conditions at varying equivalence ratio.
Technical Paper

Performance Analysis of Organic Rankine Cycle (ORC) for Recovering Waste Heat from a Heavy Duty Diesel Engine

2015-01-14
2015-26-0037
The heat losses through exhaust gases and the engine coolant contribute significantly towards reduction in thermal efficiency of an Internal Combustion (IC) engine. This largely impacts the fuel economy and power output. Waste Heat Recovery (WHR) has proven to be an effective method of overcoming these challenges. A Rankine cycle is a reverse refrigeration cycle that circulates a working fluid through the four basic components namely the pump, evaporator, turbine and condenser. It is a popular WHR approach in automotive applications with varying levels of success in the past. As the heat transfer capability in organic working fluids is greater than the conventionally used inorganic fluids, the former is used to capture maximum waste heat from low grade heat sources such as the automobile engine. A dual-loop Organic Rankine Cycle (ORC) is proposed for a heavy duty IC Engine with working fluids R245fa and R236fa for the High Temperature (HT) and Low Temperature (LT) loops respectively.
X