Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Modeling Transient Control of a Turbogenerator on a Drive Cycle

2022-03-29
2022-01-0415
GTDI engines are becoming more efficient, whether individually or part of a HEV (Hybrid Electric Vehicle) powertrain. For the latter, this efficiency manifests itself as increase in zero emissions vehicle mileage. An ideal device for energy recovery is a turbogenerator (TG), and, when placed downstream the conventional turbine, it has minimal impact on catalyst light-off and can be used as a bolt-on aftermarket device. A Ricardo WAVE model of a representative GTDI engine was adapted to include a TG (Turbogenerator) and TBV (Turbine Bypass Valve) with the TG in a mechanical turbocompounding configuration, calibrated using steady state mapping data. This was integrated into a co-simulation environment with a SISO (Single-Input, Single-Output) dynamic controller developed in SIMULINK for the actuator control (with BMEP, manifold air pressure and TG pressure ratio as the controlled variables).
Technical Paper

A Bifurcation Analysis of an Open Loop Internal Combustion Engine

2019-04-02
2019-01-0194
The process of engine mapping in the automotive industry identifies steady-state engine responses by running an engine at a given operating point (speed and load) until its output has settled. While the time simulating this process with a computational model for one set of parameters is relatively short, the cumulative time to map all possible combinations becomes computationally inefficient. This work presents an alternative method for mapping out the steady-state response of an engine in simulation by applying bifurcation theory. The bifurcation approach used in this work allows the engine’s steady-state response to be traced through the model’s state-parameter space under the simultaneous variation of one or more model parameters. To demonstrate this approach, a bifurcation analysis of a simplified nonlinear engine model is presented.
Technical Paper

Robust Methodology for Fast Crank Angle Based Temperature Measurement

2016-04-05
2016-01-1072
The paper presents a measurement methodology which combines a fine-wire thermocouple with input reconstruction in order to measure crank angle resolved temperature in an engine air-intake system. Thermocouples that are of practical use in engine experiments tend to have a large time constant which affects measurement accuracy during rapid temperature transients. Input reconstruction methods have previously been applied to thermocouples but have not been specifically used in combination with an ultra-thin uninsulated wire thermocouple to investigate cyclic intake temperature behavior. Accurate measurement results are of interest to improve the validity of many crank-angle resolved engine models. An unshielded thermocouple sensor has been developed which is rigid enough to withstand the aerodynamic forces of the intake air.
X