Refine Your Search

Topic

Search Results

Technical Paper

Compressor Body Temperature and Lubrication

2013-04-08
2013-01-1501
The paper addresses compressor body temperature (crankcase) importance to the vehicle AC system long-term durability. Majority of OEM vehicle test evaluation is to see if AC system can pass compressor discharge temperature and discharge pressure targets. Most OEMs adopt 130°C max compressor discharge temperature and 2350 kpag head pressure as the target. From the field, although some of the compressor failure results from a high compression ratio, and compressor discharge temperature that are caused by the poor front end airflow, etc., high percentage compressor failed systems exhibit not too high compression ratio and compressor discharge temperature, but having the trace of high temperature in the shaft area, gasket area, etc. With introducing more and more variable swash plate compressor applications, OEMs start to see more and more compressor failures that are not related to a high compressor discharge temperature but the trace of high compressor body temperature.
Technical Paper

Statistical Modeling of Fatigue Crack Growth in Wing Skin Fastener Holes

2012-04-16
2012-01-0482
Estimation and prediction of residual life and reliability are serious concerns in life cycle management for aging structures. Laboratory testing replicating fatigue loading for a typical military aircraft wing skin was undertaken. Specimens were tested until their fatigue life expended reached 100% of the component fatigue life. Then, scanning electron microscopy was used to quantify the size and location of fatigue cracks within the high stress regions of simulated fastener holes. Distributions for crack size, nearest neighbor distances, and spatial location were characterized statistically in order to estimate residual life and to provide input for life cycle management. Insights into crack initiation and growth are also provided.
Technical Paper

Blind Spot Monitoring by a Single Camera

2009-04-20
2009-01-1291
A practical and low cost Blind Spot Monitoring system is proposed. By using a single camera, the range and azimuth position of a vehicle in a blind spot are measured. The algorithm is based on the proposed RWA (Range Window Algorithm). The camera is installed on the door mirror and monitoring the side and rear of the host vehicle. The algorithm processes the image and identifies range and azimuth angle of the vehicle in the adjacent lane. This algorithm is applied to real situations. The 388 images including several kinds of vehicles are analyzed. The detection rate is 86% and the range accuracy is 1.6[m]. The maximum detection range is about 30[m].
Technical Paper

Knock Detection for a Large Displacement Air-Cooled V-Twin Motorcycle Engine Using In-Cylinder Ionization Signals

2008-09-09
2008-32-0028
To obtain the maximum output power and fuel economy from an internal combustion engine, it is often necessary to detect engine knock and operate the engine at its knock limit. This paper presents the ability to detect knock using in-cylinder ionization signals on a large displacement, air-cooled, “V” twin motorcycle engine over the engine operational map. The knock detection ability of three different sensors is compared: production knock (accelerometer) sensor, in-cylinder pressure sensor, and ionization sensor. The test data shows that the ionization sensor is able to detect knock better than the production knock sensor when there is high mechanical noise present in the engine.
Technical Paper

Development of a Steer-by-Wire System for the GM Sequel

2006-04-03
2006-01-1173
Steer-by-wire systems (SBW) offer the potential to enhance steering functionality by enabling features such as automatic lane keeping, park assist, variable steer ratio, and advanced vehicle dynamics control. The lack of a steering intermediate shaft significantly enhances vehicle architectural flexibility. These potential benefits led GM to include steer-by-wire technology in its next generation fuel cell demonstration vehicle, called “Sequel.” The Sequel's steer-by-wire system consists of front and rear electromechanical actuators, a torque feedback emulator for the steering wheel, and a distributed electronic control system. Redundancy of sensors, actuators, controllers, and power allows the system to be fault-tolerant. Control is provided by multiple ECU's that are linked by a fault-tolerant communication system called FlexRay. In this paper, we describe the objectives for fault tolerance and performance that were established for the Sequel.
Technical Paper

Target Tracking by a Single Camera Based on Range-Window Algorithm and Pattern Matching

2006-04-03
2006-01-0140
An algorithm, which determines the range of a preceding vehicle by a single image, had been proposed. It uses a “Range-Window Algorithm”. Here in order to realize higher robustness and stability, the pattern matching is incorporated into the algorithm. A single camera system using this algorithm has an advantage over the high cost of stereo cameras, millimeter wave radar and non-robust mechanical scanning in some laser radars. And it also provides lateral position of the vehicle. The algorithm uses several portions of a captured image, namely windows. Each window is corresponding to a predetermined range and has the fixed physical width and height. In each window, the size and position of objects in the image are estimated through the ratio between the widths of the objects and the window, and a score is given to each object. The object having the highest score is determined as the best object. The range of the window corresponding to the best object becomes an estimated range.
Technical Paper

A Filter Seal Model for Point Mobility Prediction of Air Induction Systems

2006-04-03
2006-01-1209
Virtual design validation of an air induction system (AIS) requires a proper finite element (FE) assembly model for various simulation based design tasks. The effect of the urethane air filter seal within an AIS assembly, however, still poses a technical challenge to the modeling of structural dynamic behaviors of the AIS product. In this paper, a filter seal model and its modeling approach for AIS assemblies are introduced, by utilizing the feature finite elements and empiric test data. A bushing element is used to model the unique nonlinear stiffness and damping properties of the urethane seal, as a function of seal orientation, preloading, temperature and excitation frequency, which are quantified based on the test data and empiric formula. Point mobility is used to character dynamic behaviors of an AIS structure under given loadings, as a transfer function in frequency domain.
Technical Paper

Robustness Considerations in the Design of a Stabilizer Bar System

2005-04-11
2005-01-1718
Modern automobiles utilize stabilizer bars to increase vehicle roll stiffness. Stabilizer bars are laterally mounted torsional springs which resist vertical displacement of the wheels relative to one another. A stabilizer bar is constructed in such a way that it will meet package constraints and fatigue requirements. In order to design a robust stabilizer bar, Taguchi's “Design of Experiment method” is used. The objective of this paper is to develop a robust stabilizer bar design that will maximize the fatigue life and the roll stiffness while minimizing weight. This study is based on results obtained by CAE analysis.
Technical Paper

Effect of Post Brazed Flux Residues of CAB Evaporators on the Consistency of Conversion Coating

2005-04-11
2005-01-1773
Evaporators for automotive air-conditioning systems are being coated externally to improve corrosion resistance, water drainage, and reduce potential odor concerns. The coating durability and efficiency in achieving its corrosion resistance depends on the coating uniformity and adhesion characteristics. Good coating adhesion on aluminum surface can be achieved after freeing the surface from the oxide and flux residues. Evaporators manufactured by the Controlled Atmosphere Brazing (CAB) process have flux residue remaining on the surface, the presence of which interferes with the coating process and also affects the performance of coated components. A methodology to quantify the effect of high Nocolok flux residue on heat exchanger coating uniformity has been presented.
Technical Paper

Thermal Analysis of an Electric Machine for a Hybrid Vehicle

2004-03-08
2004-01-0565
A twenty-five kilowatt (peak power for one minute), permanent magnet electric machine for a hybrid electric vehicle application was designed and tested. The electric machine is located in the clutch housing of an automatically shifted manual transmission and is subjected to 120 °C continuous ambient temperatures. The package constraints and duty cycle requirements resulted in an extremely challenging thermal design for an electric machine. The losses in the machine were predicted using models based on first principles and the heat transfer in the machine was modeled using computational fluid dynamics. The simulations were compared to test results over a variety of operating conditions and the results were used to validate the models. Parametric studies were conducted to evaluate the performance of potting materials and cooling topologies.
Technical Paper

Non-Linear Analysis of Tunable Compression Bushing for Stabilizer Bars

2004-03-08
2004-01-1548
Stabilizer bars in a suspension system are supported with bushings by a frame structure. To prevent the axial movement of the stabilizer bar within the bushing, several new stabilizer bar-bushing systems have been developed. The new systems introduce permanent compressive force between the bar and the bushing thereby preventing the relative movement of the bar within the bushing. This mechanical bond between the bar and the bushing can eliminate features such as grippy flats, collars etc. In addition, by controlling the compression parameters, the properties of the bushing such as bushing rates can be tuned and hence can be used to improve the ride and handling performance of the vehicle. In this paper, nonlinear CAE tools are used to evaluate one such compressively loaded bushing system. Computational difficulties associated with modeling such a system are discussed.
Technical Paper

A Discussion on Interior Compartment Doors and Latches

2004-03-08
2004-01-1483
Interior compartment doors are required by Federal Motor Vehicle Safety Standard (FMVSS) 201, to stay closed during physical head impact testing, and when subjected to specific inertia loads. This paper defines interior compartment doors, and shows examples of several different latches designed to keep these doors closed. It also explores the details of the requirements that interior compartment doors and their latches must meet, including differing requirements from automobile manufacturers. It then shows the conventional static method a supplier uses to analyze a latch and door system. And, since static calculations can't always capture the complexities of a dynamic event, this paper also presents a case study of one particular latch and door system showing a way to simulate the forces experienced by a latch. The dynamic simulation is done using Finite Element Analysis and instrumentation of actual hardware in physical tests.
Technical Paper

Development of a Fuel Efficient Multipurpose 75W-90 Gear Lubricant

2003-10-27
2003-01-1992
Automotive gear oil development has expanded beyond the historical requirements of emphasizing wear protection to encompass modern needs for fuel economy and limited slip frictional properties. This paper describes the development process of a new generation, fuel efficient gear lubricant for use in light duty vehicles. A systematic formulation approach was used, encompassing fluid viscometrics and additive optimization. Performance testing in both laboratory and vehicle tests is described. Though standard GL-5 tests were used to confirm oxidation, wear and corrosion performance, emphasis is given to those methods used for optimizing fuel economy.
Technical Paper

Power Steering Pump Sound Quality and Vibration - Test Stand Development

2003-05-05
2003-01-1662
The quietness of the interior of automobiles is perceived by consumers as a measure of quality and luxury. Great strides have been achieved in isolating interiors from noise sources. As noise is reduced, in particular wind and power train noise, other noise sources become evident. Noise reduction efforts are now focused on components like power steering pumps. To understand the contribution of power steering pumps a world-class noise and vibration test stand was developed. This paper describes the development of the test stand as well as it's objective to understand and improve the sound quality of power steering pumps.
Technical Paper

Vibration Assessment of a Slip-in-Tube Propshaft Through Correlated Analytical Model

2003-05-05
2003-01-1481
Analytical methods are used extensively in the automotive industry to validate the feasibility of component and assembly designs and their dynamic behavior. Correlation of analytical models with test data is an important step in this process. This paper discusses the Finite Element model of an innovative Slip-in-Tube Propshaft design. The Slip-in-Tube joint (slip joint) poses challenges for its dynamic simulation. This paper discusses the methods of simulating the joint and correlating it to experimental results. Also, the Noise and Vibration (NVH) characteristics of the Slip-in-Tube Propshaft design. In this paper, a Finite Element model of the proposed propshaft is developed using shell and beam element formulations. Each model is verified to optimize the feasibility of using accurate and computationally efficient elements for the dynamic analysis.
Technical Paper

CAE Virtual Door Slam Test for Plastic Trim Components

2003-03-03
2003-01-1209
Visteon has developed a CAE procedure to qualify plastic door trim assemblies under the vehicle door slam Key Life Test (KLT) environments. The CAE Virtual Door Slam Test (VDST) procedure simulates the environment of a whole door structural assembly, as a hinged in-vehicle door slam configuration. It predicts the durability life of a plastic door trim sub-assembly, in terms of the number of slam cycles, based on the simulated stresses and plastic material fatigue damage model, at each critical location. The basic theory, FEA methods and techniques employed by the VDST procedure are briefly described in this paper. Door trim project examples are presented to illustrate the practical applications and their results, as well as the correlation with the physical door slam KLTs.
Technical Paper

A Predictive Control Algorithm for a Yaw Stability Management System

2003-03-03
2003-01-1284
Generalized predictive control (GPC) is a discrete time control strategy proposed by Clark et al [1]. The controller tries to predict the future output of a system or plant and then takes control action at present time based on future output error. Such a predictive control algorithm is presented in this paper for yaw stability management of an automobile. Most of the existing literature on the yaw stability management systems lacks the insight into the yaw rate error growth when the automobile is in a understeer or oversteer condition on a low friction coefficient surface in a handling maneuver. Simulation results show that the predictive feature of the proposed controller provides an effective way to control the yaw stability of a vehicle.
Technical Paper

Interior Fittings – A Global View

2003-03-03
2003-01-1175
In today's global economy, the automotive design engineer's responsibilities are made more complex by the differences between regulatory requirements of the various global markets. This paper compares instrument panel head impact requirements of FMVSS 201 with its European counterparts, ECE 21, and EEC/74/60, Interior Fittings. It describes the similarities and differences between these regulations and explains the unique requirements for each market. It then compares processes for development and validation testing in both markets. It also covers related topics like self-certification, witness testing, radii, projections, and interior compartment doors. The cockpit design engineer will gain an understanding of the factors involved in ensuring that their design fully meets the requirements of the subject regulations.
Technical Paper

Bushing Characteristics of Stabilizer Bars

2003-03-03
2003-01-0239
A stabilizer bar in a suspension system is useful for preventing excessive rolls in vehicle maneuvers like cornering. Stabilizer bars are supported with bushings by either a frame or a subframe. To prevent the axial movement of the stabilizer bar within the bushing, features like add on collars, upset rings, grippy flats etc. are used on the stabilizer bar. At Visteon Corporation, several new stabilizer bar - bushing systems are developed where such axial movement is prevented by the use of compressive force. Relative merits of different stabilizer bar - bushing systems are compared in terms of roll stiffness and maximum stress on the bar through the use of finite elements.
Technical Paper

Driver Steering Performance Using Joystick vs. Steering Wheel Controls

2003-03-03
2003-01-0118
A fixed-base driving simulator with a 14-degree of freedom vehicle dynamics model was used to compare the lane tracking performance of test subjects using a joystick steering controller to that using a conventional steering wheel. Three driving situations were studied: a) straight-line highway driving, b) winding road driving (country road), and c) evasive maneuvering - a double lane change event. In addition, three different joystick force-feedback settings were evaluated: i) linear force feedback, ii) non-linear, speed sensitive force feedback and iii) no force feedback. A conventional steering wheel with typical passenger car force feedback tuning was used for all of the driving events for comparison.
X