Refine Your Search

Topic

Search Results

Technical Paper

Statistical Modeling of Fatigue Crack Growth in Wing Skin Fastener Holes

2012-04-16
2012-01-0482
Estimation and prediction of residual life and reliability are serious concerns in life cycle management for aging structures. Laboratory testing replicating fatigue loading for a typical military aircraft wing skin was undertaken. Specimens were tested until their fatigue life expended reached 100% of the component fatigue life. Then, scanning electron microscopy was used to quantify the size and location of fatigue cracks within the high stress regions of simulated fastener holes. Distributions for crack size, nearest neighbor distances, and spatial location were characterized statistically in order to estimate residual life and to provide input for life cycle management. Insights into crack initiation and growth are also provided.
Technical Paper

Knock Detection for a Large Displacement Air-Cooled V-Twin Motorcycle Engine Using In-Cylinder Ionization Signals

2008-09-09
2008-32-0028
To obtain the maximum output power and fuel economy from an internal combustion engine, it is often necessary to detect engine knock and operate the engine at its knock limit. This paper presents the ability to detect knock using in-cylinder ionization signals on a large displacement, air-cooled, “V” twin motorcycle engine over the engine operational map. The knock detection ability of three different sensors is compared: production knock (accelerometer) sensor, in-cylinder pressure sensor, and ionization sensor. The test data shows that the ionization sensor is able to detect knock better than the production knock sensor when there is high mechanical noise present in the engine.
Technical Paper

A Real Time Statistical Method for Engine Knock Detection

2007-04-16
2007-01-1507
The traditional method of engine knock detection is to compare the knock intensity with a predetermined threshold. The calibration of this threshold is complex and difficult. A statistical knock detection method is proposed in this paper to reduce the effort of calibration. This method dynamically calculates the knock threshold to determine the knock event. Theoretically, this method will not only adapt to different fuels but also cope with engine aging and engine-to-engine variation without re-calibration. This method is demonstrated by modeling and evaluation using real-time engine dynamometer test data.
Technical Paper

Development of a Steer-by-Wire System for the GM Sequel

2006-04-03
2006-01-1173
Steer-by-wire systems (SBW) offer the potential to enhance steering functionality by enabling features such as automatic lane keeping, park assist, variable steer ratio, and advanced vehicle dynamics control. The lack of a steering intermediate shaft significantly enhances vehicle architectural flexibility. These potential benefits led GM to include steer-by-wire technology in its next generation fuel cell demonstration vehicle, called “Sequel.” The Sequel's steer-by-wire system consists of front and rear electromechanical actuators, a torque feedback emulator for the steering wheel, and a distributed electronic control system. Redundancy of sensors, actuators, controllers, and power allows the system to be fault-tolerant. Control is provided by multiple ECU's that are linked by a fault-tolerant communication system called FlexRay. In this paper, we describe the objectives for fault tolerance and performance that were established for the Sequel.
Technical Paper

Target Tracking by a Single Camera Based on Range-Window Algorithm and Pattern Matching

2006-04-03
2006-01-0140
An algorithm, which determines the range of a preceding vehicle by a single image, had been proposed. It uses a “Range-Window Algorithm”. Here in order to realize higher robustness and stability, the pattern matching is incorporated into the algorithm. A single camera system using this algorithm has an advantage over the high cost of stereo cameras, millimeter wave radar and non-robust mechanical scanning in some laser radars. And it also provides lateral position of the vehicle. The algorithm uses several portions of a captured image, namely windows. Each window is corresponding to a predetermined range and has the fixed physical width and height. In each window, the size and position of objects in the image are estimated through the ratio between the widths of the objects and the window, and a score is given to each object. The object having the highest score is determined as the best object. The range of the window corresponding to the best object becomes an estimated range.
Technical Paper

Vibration Test Specification for Automotive Products Based on Measured Vehicle Load Data

2006-04-03
2006-01-0729
A test load specification is required to validate an automotive product to meet the durability and design life requirements. Traditionally in the automotive industry, load specifications for design validation tests are directly given by OEMs, which are generally developed from an envelop of generic customer usage profiles and are, in most cases, over-specified. In recent years, however, there are many occasions that a proposed load specification for a particular product is requested. The particular test load specification for a particular product is generated based on the measured load data at its mounting location on the given type of vehicles, which contains more realistic time domain load levels and associated frequency contents. The measured time domain load is then processed to frequency domain test load data by using the fast Fourier transform and damage equivalent techniques.
Technical Paper

Software Validation a Vital Activity for a Mature Product Development Organization

2005-11-22
2005-01-4168
Software is today one of the most important components of electronic products. The capture and validation of the requirements makes a difference if the product will fulfill the customer's expectations or generate enormous frustration. The correct implementation of software validation makes the Product Development Organization more mature and reliable. Software validation is an opportunity for the product development team to identify if the requirements and customer expectations were achieved. It is also used to identify the risks and possible improvements to the product. Software testing is one element of a brooder topic that is often referred to as verification and validation (V&V). Verification refers to the set of activities that ensure that software correctly implements a specific function. Validation refers to a different set of activities that ensure that the software that has been built is traceable to customer requirements.
Technical Paper

Multivariate Statistical Methods for the Analysis of NVH Data

2005-05-16
2005-01-2518
The present work discusses the application of multivariate statistical methods for the analysis of NVH data. Unlike conventional statistical methods which generally consider single-value, or univariate data, multivariate methods enable the user to examine multiple response variables and their interactions simultaneously. This characteristic is particularly useful in the examination of NVH data, where multiple measurements are typically used to assess NVH performance. In this work, Principal Components Analysis (PCA) was used to examine the NVH data from a benchmarking study of hydraulic steering pumps. A total of twelve NVH measurements for each of 99 pump samples were taken. These measurements included steering pump orders and overall levels for vibration and sound pressure level at two microphone locations. Application of the PCA method made it possible to examine the entire set of data at once.
Technical Paper

Simple Application of DOE Methods to Reduce Whistle Noise in a HPAS Pump Relief Valve

2005-05-16
2005-01-2468
The present work demonstrates the application of Design of Experiments (DOE) statistical methods to the design and the improvement of a hydraulic steering pump noise, vibration, and harshness (NVH) performance in relief. DOE methods were applied to subjective ratings to examine the effect of several different factors, as well as the interactions between these factors on pump relief NVH. Specifically, the DOE was applied to the geometry of the cross ports on a hydraulic relief valve to improve “whistle” noise in the pump. Statistical methods were applied to determine which factors and interactions had a significant effect on pump whistle. These factors were used to produce a more robust cross port configuration reducing whistle noise. Lastly, the final configuration was experimentally verified on the test apparatus and subjectively confirmed in vehicle-level testing.
Technical Paper

Analytical Calculation of the Critical Speed of a Driveshaft

2005-05-16
2005-01-2310
Determination of the critical speed of a driveshaft is critical for development and validation of its design for use in a vehicle because of its destructive effects. Typical calculations to determine critical speed are either over simplistic and not very accurate or very complicated requiring CAE software and capabilities. An analytical five-section non-prismatic beam model was developed to fill in this gap. The model was developed to compute the critical speed in a worksheet and proven to be as or more accurate as utilizing FEA methods. The model worksheet calculates the critical speed for one-piece conventional driveshafts and adapted for Visteon's Slip-In-Tube (SIT) driveshafts.
Technical Paper

Localized Nonlinear Model of Plastic Air Induction Systems for Virtual Design Validation Tests

2005-04-11
2005-01-1516
Plastic air induction system (AIS) has been widely used in vehicle powertrain applications for reduced weight, cost, and improved engine performance. Physical design validation (DV) tests of an AIS, as to meet durability and reliability requirements, are usually conducted by employing the frequency domain vibration tests, either sine sweep or random vibration excitations, with a temperature cycling range typically from -40°C to 120°C. It is well known that under high vibration loading and large temperature range, the plastic components of the AIS demonstrate much higher nonlinear response behaviors as compared with metal products. In order to implement a virtual test for plastic AIS products, a practical procedure to model a nonlinear system and to simulate the frequency response of the system, is crucial. The challenge is to model the plastic AIS assembly as a function of loads and temperatures, and to evaluate the dynamic response and fatigue life in frequency domain as well.
Technical Paper

Treatment of Confidence levels When Allocating System Reliability Requirements

2005-04-11
2005-01-1776
Reliability allocation of system objectives for Reliability validation purposes must account for Confidence levels. Misallocating Confidence levels can lead to unrealistic and unmanageable objectives, resulting in increased development times and associated costs. Therefore, it is necessary to correctly model both Reliability and Confidence levels. Unfortunately, modeling for anything more complex than the simplest pass/fail test criteria can become quite complex in a multi-component system. The easiest case to model is time-censored testing with no failures. But time-censored testing with no failures is just a small subset of all viable validation strategies. Given that the validation strategy for each component can be different, trying to isolate a single one-size-fits-all model is extremely difficult. For these complex scenarios, computer simulation provides the best approach to calculating true system performance.
Technical Paper

Design of Experiments Application (DOE) to Prevent Mechanical Noise in Power Rack & Pinion Steering Systems

2004-11-16
2004-01-3377
Nowadays, ever market vehicle change affects body, suspension & steering gear systems. The purpose of this report is to quantify the methodology for evaluating and improving rattle mechanical noises in power rack & pinion steering systems. It is very important the correct process be used to adjust and approve the power steering gears in order to prevent the knock noise issue on services (warranty). This report describes how Visteon's Engineering makes efforts to achieve a reduction in warranty issues due to mechanical noise in the power steering gear, which affects its performance. We refer to this mechanical noise as “Knocking Noise” which derives from the gearing (meshing) adjustment loss. This experiment, supported by the Six Sigma methodology, led to new knowledge on how to improve the method of meshing adjust and test approval in process through of Design of Experiments (DOE).
Technical Paper

Thermal Analysis of an Electric Machine for a Hybrid Vehicle

2004-03-08
2004-01-0565
A twenty-five kilowatt (peak power for one minute), permanent magnet electric machine for a hybrid electric vehicle application was designed and tested. The electric machine is located in the clutch housing of an automatically shifted manual transmission and is subjected to 120 °C continuous ambient temperatures. The package constraints and duty cycle requirements resulted in an extremely challenging thermal design for an electric machine. The losses in the machine were predicted using models based on first principles and the heat transfer in the machine was modeled using computational fluid dynamics. The simulations were compared to test results over a variety of operating conditions and the results were used to validate the models. Parametric studies were conducted to evaluate the performance of potting materials and cooling topologies.
Technical Paper

Finite Element Model Correlation of an Automotive Propshaft with Internal and External Dampers

2004-03-08
2004-01-0862
In the absence of prototypes, analytical methods such as finite element analysis are very useful in resolving noise and vibration problems, by predicting dynamic behavior of the automotive components and systems. Finite Element Analysis (FEA) is a simulation technique and involves making assumptions that affect analytical results. Acceptance and use of these results is greatly enhanced through test validation. In this paper, dynamic behavior of the automotive propshaft equipped with cardboard liner and torsional damper is investigated. The finite element model is validated at both component and subsystem levels using frequency response functions. Effects of the cardboard liner and torsional damper on the propshaft bending, torsional and breathing frequencies are studied under free-free boundary conditions. Effects of the U-Joint stiffness along with other design variables on the driveshaft dynamic behavior are also studied.
Technical Paper

Evaluation of a Multi-Leaf Hybrid Springs for Automotive Suspensions

2004-03-08
2004-01-0782
The fundamentals of multi-leaf spring design as determined through beam theory offers a general perspective on how finite element analysis works. Additionally, the fundamentals of combining dissimilar materials require a basic knowledge of how the combined equivalent modulus affects the overall stiffness characteristics of multi-leaf design. By capturing these basic fundamentals into finite element modeling, an analysis of a steel-composite multi-leaf contact model relative to an idealized steel-composite multi-leaf model shows the importance of contact modeling. The results demonstrate the important differences between an idealized non-contact model relative to a complete contact model.
Technical Paper

Optimal Design of Roller One Way Clutch for Starter Drives

2004-03-08
2004-01-1151
The starter drive clutch is a one way roller clutch and a key component in a starter motor that is used to crank internal combustion engines. The starter drive clutch transmits torque from an electrical motor to a ring gear mounted on a cranking shaft in an engine thus cranks the engine. The clutch also prevents the whole starter from damage caused by extremely high load and/or extremely high speed applied to the starter pinion from the engine. Drive slippage and barrel cracking are two major failure modes for the starter drive[1]. Insufficient torque capacity results in drive slippage while excessive high hoop stress on the clutch barrel ring causes barrel crack. To eliminate drive slippage failure, the clutch should be designed with high torque capacity. High torque capacity, however, is a cause of high hoop stress on the barrel that may result in the cracked barrel failure. Higher torque capacity and lower hoop stress are two completely opposite design directions.
Technical Paper

A Discussion on Interior Compartment Doors and Latches

2004-03-08
2004-01-1483
Interior compartment doors are required by Federal Motor Vehicle Safety Standard (FMVSS) 201, to stay closed during physical head impact testing, and when subjected to specific inertia loads. This paper defines interior compartment doors, and shows examples of several different latches designed to keep these doors closed. It also explores the details of the requirements that interior compartment doors and their latches must meet, including differing requirements from automobile manufacturers. It then shows the conventional static method a supplier uses to analyze a latch and door system. And, since static calculations can't always capture the complexities of a dynamic event, this paper also presents a case study of one particular latch and door system showing a way to simulate the forces experienced by a latch. The dynamic simulation is done using Finite Element Analysis and instrumentation of actual hardware in physical tests.
Technical Paper

Virtual Key Life Tests of Instrument Panels for Product Development

2004-03-08
2004-01-1482
Visteon has developed a CAE procedure to qualify instrument panel (IP) products under the vehicle key life test environments, by employing a set of CAE simulation and durability techniques. The virtual key life test method simulates the same structural configuration and the proving ground road loads as in the physical test. A representative dynamic road load profile model is constructed based on the vehicle proving ground field data. The dynamic stress simulation is realized by employing the finite element transient analysis. The durability evaluation is based on the dynamic stress results and the material fatigue properties of each component. The procedure has helped the IP engineering team to identify and correct potential durability problems at earlier design stage without a prototype. It has shown that the CAE virtual key life test procedure provides a way to speed up IP product development, to minimize prototypes and costs.
Technical Paper

Analyzing Unassigned Interactions to Strengthen DOE Strategy

2004-03-08
2004-01-1746
Low resolution fractional factorial experimental designs, used in screening, are more popular than ever due to the ever increasing costs of materials and machine time. Experimenters have to be more precise in their analysis, making every degree of freedom count. Resolution III designs are becoming more commonplace for use in screening designs. When running unsaturated resolution III designs there are extra degrees of freedom stemming from unassigned interactions. It is common practice to utilize these extra degrees of freedom to approximate error. In many cases, this common practice can over state the error and lead to erroneous results regarding factor statistical significance. Utilizing saturated resolution III designs and statistically analyzing unassigned interactions while estimating the error with replication is a method for strengthening the DOE strategy and improving the results from screening designs.
X