Refine Your Search

Topic

Search Results

Technical Paper

Test Strategy for Linux based Platforms using Open Source Tools

2016-04-05
2016-01-0053
Today open source software is widely used in different domains like Desktop systems, Consumer electronics (smart phones, TV, washing machines, camera, printers, smart watches), Automotive, Automation etc. With the increased involvement of the open source software in the different domains including the safety critical ones, there has been a requirement of the well-defined test strategy to test and verify such systems. Currently there are multiple open source tools and frameworks to choose from. The paper describes the various open source test strategies and tools available to qualify such systems, their features, maintenance, community support, advantages and disadvantages. Target audience would be the software engineers, program managers, using an open source stack for the product development.
Journal Article

Ensuring Audio Signal Quality in Automotive Infotainment Systems

2013-04-08
2013-01-0163
In automotive infotainment systems, multiple types of digital audio signals are usually present. Some come from internal sources, such as a CD or USB stick, and some come from external sources, such as an internet stream or digital radio. These sources usually have different sample-rates, and may also be different from one or more system sample-rates. Managing and transporting these signals throughout the system over different sample-rate domains require detailed upfront architecture analysis and correct system design to ensure signal quality is maintained to the desired level. Incorrect design can add significant user-perceivable noise and distortion. This paper examines the key analysis factors, the effects of poor design and the approaches for achieving robust signal handling and ensuring desired signal quality.
Technical Paper

Radiated Noise Prediction of Air Induction Systems Using Filter Seal Modeling and Coupled Acoustic-Structural Simulation Techniques

2007-04-16
2007-01-0253
In this paper, an analytical procedure for prediction of shell radiated noise of air induction systems (AIS) due to engine acoustic excitation, without a prototype and physical measurement, is presented. A set of modeling and simulation techniques are introduced to address the challenges to the analytical radiated noise prediction of AIS products. A filter seal model is developed to simulate the unique nonlinear stiffness and damping properties of air cleaner boxes. A finite element model (FEM) of the AIS assembly is established by incorporating the AIS structure, the proposed filter seal model and its acoustic cavity model. The coupled acoustic-structural FEM of the AIS assembly is then employed to compute the velocity frequency response of the AIS structure with respect to the air-borne acoustic excitations.
Technical Paper

Prediction of Vehicle Steering System NVH from Component-Level Test Data

2006-04-03
2006-01-0483
This work demonstrates a practical method for predicting vehicle-level automotive steering system NVH performance from component-level NVH measurements of hydraulic steering pumps. For this method, in-vehicle measurements were completed to quantify vehicle noise path characteristics, including steering system structure borne, fluid borne and airborne paths. At the component level, measurements of steering pump reaction forces, sound power and dynamic hydraulic pressure were also completed. The vehicle-level measurement data was used to construct NVH transfer functions for the vehicle. These transfer functions were in turn combined with the pump component data measured on a test stand to create a prediction for steering pump order vehicle interior noise. The accuracy of these predicted values was assessed through comparison with actual vehicle interior noise measurements.
Technical Paper

Statistical Identification and Analysis of Vehicle Noise Transfer Paths

2005-05-16
2005-01-2511
Identification of vibration transfer paths is critical to proper isolation of vibration excitations from becoming objectionable noise in a vehicle. Traditional transfer path methods involve comparing vibration inputs to the outputs of each joint. This method can be time consuming and inefficient due to a complexity of paths. A new statistical method was developed to improve the efficiency of testing. This method requires the measurement of the excitation vibration input at each joint of the source component and response sound measurements in the vehicle. Identification of transfer paths using regression analysis will determine the trouble paths to scrutinize.
Technical Paper

Simple Application of DOE Methods to Reduce Whistle Noise in a HPAS Pump Relief Valve

2005-05-16
2005-01-2468
The present work demonstrates the application of Design of Experiments (DOE) statistical methods to the design and the improvement of a hydraulic steering pump noise, vibration, and harshness (NVH) performance in relief. DOE methods were applied to subjective ratings to examine the effect of several different factors, as well as the interactions between these factors on pump relief NVH. Specifically, the DOE was applied to the geometry of the cross ports on a hydraulic relief valve to improve “whistle” noise in the pump. Statistical methods were applied to determine which factors and interactions had a significant effect on pump whistle. These factors were used to produce a more robust cross port configuration reducing whistle noise. Lastly, the final configuration was experimentally verified on the test apparatus and subjectively confirmed in vehicle-level testing.
Technical Paper

On the Use of BEA with Engine Simulation as an Input to Predict Air Induction Inlet Noise

2005-05-16
2005-01-2350
Engine air induction noise can play a significant role in the reduction of vehicle interior noise levels and tuning interior sound quality. Given the need to reduce prototyping and testing costs, it is important to gain an understanding of the level and frequency structure of the noise radiating from the open inlet of the air induction system. Engine simulation used independently can predict inlet noise; however, its utility is limited to systems that are largely one-dimensional. Systems that exhibit a three-dimensional nature, such as the wave dynamics in an engine air cleaner, require a more intensive approach. Boundary Element Analysis (BEA) has been demonstrated to be a tool that can be used to predict the frequency response of ducted systems and is particularly useful in highly three-dimensional systems.
Technical Paper

Improved Hydraulic Power Steering Pump Design Using Computer Tools

2005-04-11
2005-01-1269
A hydraulic steering pump system will be considered in this report. The objective is to improve the design of a specific power steering pump using computational fluid dynamics (CFD) tools. The first part of this report deals with a pump oil seal leak. The thermal and fluid environments have been simulated. A variable fluid viscosity is used, showing a 15-20% increase in peak temperature. Potential improvements in product design have been suggested. The second part deals with using computer tools to reduce redundant testing. This includes use of parametric approach towards optimization. A rotating grid approach (basic moving mesh technique) is used.
Technical Paper

Control Software Interface for Managing System Requirements

2004-03-08
2004-01-0363
Not all software tools are created equal and not all software tools are created to perform the same tasks. Therefore, different software tools are used to perform different tasks. However, being able to share the information between the different software tools, without having to manually re-enter (duplicate) any of the information, can save a lot of time and improve the quality of the product. The control software interface presented in this paper, allows system engineers to exchange data between software tools in an efficient manner which maximizes each tools capabilities and ultimately reduces development time and improves the quality of the product.
Technical Paper

A Computer Aided Optimization Tool to Design Electromagnetic Retarders

2004-03-08
2004-01-0382
The work presented here outlines the development of a robust CAO tool for optimal design of electromagnetic retarder machines. The developed EM-CAO tool is then used to perform a wide variety of CAE/CAO tasks, from automatically computing the torque versus rpm performance curves of the EM retarder to performing optimization. Two specific examples of optimal design of the EM retarder are reported. Through the use of a task manager/optimizer repetitive jobs are fully automated thereby making the analysis and optimization of electromagnetic retarders faster and user-friendlier.
Technical Paper

An Overview of Hardware-In-the-Loop Testing Systems at Visteon

2004-03-08
2004-01-1240
This paper discusses our experiences on the implementation and benefits of using the Hardware-In-the-Loop (HIL) systems for Powertrain control system software verification and validation. The Visteon HIL system integrated with several off-the-shelf diagnostics and calibration tools is briefly explained. Further, discussions on test automation sequence control and failure insertion are outlined The capabilities and advantages of using HIL for unit level software testing, open loop and closed-loop system testing, fault insertion and test automation are described. HIL also facilitates Software and Hardware Interface validation testing with low-level driver and platform software. This paper attempts to show the experiences with and capabilities of these HIL systems.
Technical Paper

Non-Linear Analysis of Tunable Compression Bushing for Stabilizer Bars

2004-03-08
2004-01-1548
Stabilizer bars in a suspension system are supported with bushings by a frame structure. To prevent the axial movement of the stabilizer bar within the bushing, several new stabilizer bar-bushing systems have been developed. The new systems introduce permanent compressive force between the bar and the bushing thereby preventing the relative movement of the bar within the bushing. This mechanical bond between the bar and the bushing can eliminate features such as grippy flats, collars etc. In addition, by controlling the compression parameters, the properties of the bushing such as bushing rates can be tuned and hence can be used to improve the ride and handling performance of the vehicle. In this paper, nonlinear CAE tools are used to evaluate one such compressively loaded bushing system. Computational difficulties associated with modeling such a system are discussed.
Technical Paper

Design Review a Tool for Product Development Quality Assurance

2003-11-18
2003-01-3670
Same of the more enticing and productive opportunities to a useful work in product assurance are those of influencing the design of a product. The primary concern of design assurance is preventing or correcting those design errors that lead to poor product integrity. One of the tools used by the development teams in many organizations is the Design Review. The impact in cost and quality is directly affected by the correct utilization of the tool.
Technical Paper

Power Steering Pump Sound Quality and Vibration - Test Stand Development

2003-05-05
2003-01-1662
The quietness of the interior of automobiles is perceived by consumers as a measure of quality and luxury. Great strides have been achieved in isolating interiors from noise sources. As noise is reduced, in particular wind and power train noise, other noise sources become evident. Noise reduction efforts are now focused on components like power steering pumps. To understand the contribution of power steering pumps a world-class noise and vibration test stand was developed. This paper describes the development of the test stand as well as it's objective to understand and improve the sound quality of power steering pumps.
Technical Paper

Vibration Assessment of a Slip-in-Tube Propshaft Through Correlated Analytical Model

2003-05-05
2003-01-1481
Analytical methods are used extensively in the automotive industry to validate the feasibility of component and assembly designs and their dynamic behavior. Correlation of analytical models with test data is an important step in this process. This paper discusses the Finite Element model of an innovative Slip-in-Tube Propshaft design. The Slip-in-Tube joint (slip joint) poses challenges for its dynamic simulation. This paper discusses the methods of simulating the joint and correlating it to experimental results. Also, the Noise and Vibration (NVH) characteristics of the Slip-in-Tube Propshaft design. In this paper, a Finite Element model of the proposed propshaft is developed using shell and beam element formulations. Each model is verified to optimize the feasibility of using accurate and computationally efficient elements for the dynamic analysis.
Technical Paper

Acoustic Modeling and Radiated Noise Prediction for Plastic Air-Intake Manifolds

2003-05-05
2003-01-1448
Reliable prediction of the radiated noise due to the air pressure pulsation inside air-intake manifolds (AIM) is of significant interest in the automotive industry. A practical methodology to model plastic AIMs and a prediction process to compute the radiated noise are presented in this paper. The measured pressure at the engine inlet valve of an AIM is applied as excitation on an acoustic boundary element model of the AIM in order to perform a frequency response analysis. The measured air pressure pulsation is obtained in the crank-angle domain. This pressure is read into MATLAB and transformed into the frequency domain using the fast Fourier transform. The normal modes of the structure are computed in ABAQUS and a coupled analysis in SYSNOISE is launched to couple the boundary element model and the finite element model of the structure. The computed surface vibration constitutes the excitation for an acoustic uncoupled boundary element analysis.
Technical Paper

Application of DOE Methods to RPM-Domain Data for Hydraulic Steering Pump NVH Improvement

2003-05-05
2003-01-1431
The present work demonstrates the application of Design of Experiments (DOE) statistical methods to the design and optimization of a hydraulic steering pump for NVH performance. DOE methods were applied to RPM-domain data to examine the effect of several different factors, as well as the interactions between these factors, on pump NVH. Whereas most DOE analyses typically consider only a single response variable, the present work considered multiple response variables. Specifically, pump NVH performance curves for several pump rotational orders over a range of shaft speeds were analyzed. Thus, it was possible to determine the effect of the factors in question over the entire speed range of pump operation, rather than a single speed or setting. Statistical methods were applied to determine which factors and interactions had a significant effect on pump NVH. These factors were used to construct an empirical mathematical prediction model for NVH performance.
Technical Paper

A Correlation Study of Computational Techniques to Model Engine Air Induction System Response Including BEM, FEM and 1D Methods

2003-05-05
2003-01-1644
Induction noise, which radiates from the open end of the engine air induction system, can be of significant importance in reducing vehicle interior noise and tuning the interior sound to meet customer expectations. This makes understanding the source noise critical to the development of the air induction system and the vehicle interior sound quality. Given the ever-decreasing development times, it is highly desirable to use computer-aided engineering (CAE) tools to accelerate this process. Many tools are available to simulate induction noise or, more generally, duct acoustics. The tools vary in degrees of complexity and inherent assumptions. Three-dimensional tools will account for the most general of geometries. However, it is also possible to model the duct acoustics with quasi-three-dimensional or one-dimensional tools, which may be faster as well.
Technical Paper

Development of Modular Electrical, Electronic, and Software System Architectures for Multiple Vehicle Platforms

2003-03-03
2003-01-0139
Rising costs continue to be a problem within the automotive industry. One way to address these rising costs is through modularity. Modular systems provide the ability to achieve product variety through the combination and standardization of components. Modular design approaches used in development of vehicle electrical, electronic, and software (EES) systems allow sharing of architectures/modules between different product lines (vehicles). This modular design approach may provide economies of scale, reduced development time, reduced order lead-time, easier product diagnostics, maintenance and repair. Other benefits of this design approach include development of a variety of EES systems through component swapping and component sharing. In this paper, new optimization algorithms and software tools are presented that allow vehicle EES system design engineers to develop modular architectures/modules that can be shared across vehicle platforms (for OEMs) and across OEMs (for suppliers).
Technical Paper

GENPAD® - Ergonomic Packaging

2002-03-04
2002-01-1241
GENPAD® is a knowledge-based, three-dimensional modeling computer tool developed by Visteon to create occupant-friendly interiors. GENPAD quickly and easily produces zones to evaluate ergonomic aspects of vehicle interiors such as reach, clearance, vision, and reflection. These zones are produced from automated design studies based on experience and engineering standards accepted by the automotive industry. Without GENPAD, a single study requires an experienced engineer 4-6 hours to complete. Multiple studies require several engineers weeks to perform. The methods used are also error-prone due to complex instructions. To overcome these challenges, GENPAD provides over 50 ergonomic packaging studies that produce accurate results in minutes, not weeks, every time.
X