Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Steer-by-Wire: Universal Calculation of Production-Dependent, Strongly Fluctuating Friction in Steering

2023-11-22
2023-01-5082
In steer-by-wire (SbW) vehicles, understanding the steering rack force is essential to replicate a realistic steering feel, allowing conclusions to be drawn about road surface conditions by the decoupled manual actuator. Since internal friction varies with each steering system manufactured and installed, these models differ greatly in accuracy. This paper presents a concept for continuously calculating fluctuating friction based on the internal steering variables to avoid additional and complex individual measurements. An SbW system offers the right approach by adjusting the driver’s desired steering angle and the required motor control. The underlying steering clearance and the Kalman filter are used to calculate the steering rack force. The validity of the proposed concept is shown in drive tests according to ISO 13674 and ISO 7401 to gauge high and low friction values in different speed ranges.
Technical Paper

Function-in-the-Loop Simulation of Electromechanical Steering Systems—Concept, Implementation, and Use Cases

2023-02-10
2023-01-5011
The accelerated processes in vehicle development require new technologies for function development and validation. With this motivation, Function-in-the-Loop (FiL) simulation was developed as a link between Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) simulation. The combination of real Electronic Control Unit (ECU) hardware and software in conjunction with virtual components is very well suited for function development and testing. This approach opens up new possibilities for mechatronic systems that would otherwise require special test benches. For this reason, an Electric Power Steering (EPS) was transferred to a virtual environment using FiL simulation. This enables a wide range of applications, from EPS testing to the development of connected driving functions on an integrated platform. Right from the early development phases, the technology can be used purposefully with short integration cycles.
Journal Article

Investigation of Influences on Brake Pad Wear

2020-10-05
2020-01-1614
To date, no generally valid statements can be made about the service life of brake pads, which may be due to factors such as driving style, the friction material used or the varying vehicle weight. While dynamic friction models including friction history are already established [1], the investigation of wear and wear dust behavior is currently in the focus of many research projects. One example is the investigation of calculation models for brake pad wear while neglecting the temperature development in the brake [2]. In cars, temperatures of up to 800°C occur in the brake under high loads, which leads to a significant increase in wear. Accordingly, the question arises how an estimation of brake pad wear can be applied to highly dynamic load cases. To do this, however, the processes taking place in the boundary layer between pad and disc must first be comprehensively understood and described.
Technical Paper

Experimental Investigation of the Droplet Field of a Rotating Vehicle Tyre

2019-06-18
2019-01-5068
The consideration of vehicle soiling in the development process becomes ever more important because of the increasing customer demands on current vehicles and the increased use of camera and sensor systems due to autonomous driving. In the process of self-soiling, a soil-water mixture is whirled up by the rotation of the car’s own wheels and deposits on the vehicle surface. The validation of the soiling characteristics in vehicle development usually takes place in an experimental manner, but is increasingly supported by numerical simulations. The droplet field at the tyre has been investigated several times in the past. However, there are no published information regarding the physical background of the droplet formation process and the absolute droplet sizes considering the position at the tyre and the behaviour at different velocities.
Technical Paper

Steering Feedback Perception of Average Drivers

2018-04-15
2018-01-5015
Electromechanical steering systems (EPS) provide assisting steering force through an electric motor, often paired with a screw drive. The combination of an electric motor and a screw drive lead to high inertia and thus to a reduced feedback of tire force behavior at the steering wheel. This force behavior contains information about driving conditions and road surface. However, the electric motor can be used to actively enhance and manipulate steering feedback. This article describes the driver perception of modified steering feedback. The presented data is collected carrying out a driving simulator study with average drivers as test subjects. In this study the driver experiences a modified steering feedback at a change of road friction coefficient. Based on the test subjects ratings the perception, acceptance and controllability of the presented steering feedback modifications are assessed.
Journal Article

Objective Evaluation of Steering Rack Force Behaviour and Identification of Feedback Information

2016-09-02
2016-01-9112
Electric power steering systems (EPS) are characterized by high inertia and therefore by a considerably damped transmission behaviour. While this is desirable for comfort-oriented designs, EPS do not provide enough feedback of the driving conditions, especially for drivers with a sporty driving style. The systematic actuation of the electric motor of an EPS makes it possible to specifically increment the intensity of the response. In this context, the road-sided induced forces of the tie rod and the steering rack force provide all the information for the steering system’s response. Former concepts differentiate between use and disturbance information by defining frequency ranges. Since these ranges overlap strongly, this differentiation does not segment distinctively. The presented article describes a method to identify useful information in the feedback path of the steering system depending on the driving situation.
Technical Paper

Experimental Investigation of the Primary Spray Development of GDI Injectors for Different Nozzle Geometries

2015-04-14
2015-01-0911
The optimization of the mixture formation represents great potential to decrease fuel consumption and emissions of spark-ignition engines. The injector and the nozzle are of major importance in this concern. In order to adjust the nozzle geometry according to the requirements an understanding of the physical transactions in the fuel spray is essential. In particular, the primary spray break-up is still described inadequately due to the difficult accessibility with optical measuring instruments. This paper presents a methodology for the characterization of the nozzle-near spray development, which substantially influences the entire spray shape. Single hole injectors of the gasoline direct injection (GDI) with different nozzle hole geometries have been investigated in a high pressure chamber by using the MIE scattering technique. To examine the spray very close to the nozzle exit a long-distance microscope in combination with a Nd:YAG-laser was used.
Technical Paper

Simulation Based Analysis of Test Results

2010-04-12
2010-01-1013
The use of a newly developed approach results in a highly accurate three dimensional analysis of the occupant movement. The central point of the new method is the calculation of precise body-trajectories by fitting standard sensor-measurements to video analysis data. With the new method the accuracy of the calculated trajectories is better than 5 to 10 millimeters. These body trajectories then form the basis for a new multi-body based numerical method, which allows the three dimensional reconstruction of the dummy kinematics. In addition, forces and moments acting on every single body are determined. In principle, the body movement is reconstructed by prescribing external forces and moments to every single body requiring that it follows the measured trajectory. The newly developed approach provides additional accurate information for the development engineers. For example the motion of dummy body parts not tracked by video analysis can be determined.
Technical Paper

Springback Elimination in Structural Components by Means of Electromagnetic Forming

2009-04-20
2009-01-0803
Looking for car weight reduction related to the use of High Strength Steels (HSS) for manufacturing body-in-white components, an innovative application of the high velocity forming techniques has been developed: the Electro Magnetic (EM) calibration and elimination of the spring-back effect (sidewall curl) of High Strength Steel U-channels. Within this paper the initial tests on L and U-shaped parts will be presented. Being the mechanical stiffness the main parameter for improving the coil endurance, the prediction of the coil strains under EM forces is a basic issue, which has been addressed within this study.
Technical Paper

Experimental and Numerical Simulation of the Flow Around the Brake Disk of a Scaled-Down VW Phaeton Model

2007-10-07
2007-01-3949
In this paper, the experimental and numerical simulation of the flow field in the simplified front wheel arch of a scaled-down VW Phaeton half-model (scale 1:2,5) is presented. For wind tunnel experiments a realistic, rotating wheel model with plexiglass treads (PMMA) was designed. The construction allowed for detailed measurements of the flow field directly at the brake disk by means of the stereoscopic Particle Image Velocimetry (PIV) technique. The formation of the flow structures and the resulting three-dimensional boundary layers on the brake disk are analyzed. Furthermore, the oncoming air flow towards the brake disk and the flow field near the wheel rim openings were investigated. The experimental data is compared with results of Computational Fluid Dynamics (CFD) simulations using the Lattice-Boltzmann based solver Powerflow. The validation shows the potential and the limitations of the numerical approach and indicates areas of further improvement.
Technical Paper

Brake Judder - Analysis of the Excitation and Transmission Mechanism within the Coupled System Brake, Chassis and Steering System

2005-10-09
2005-01-3916
The prevention of any brake noise or brake-induced body vibrations is a key development target firmly integrated in the car development process. Emphasis is placed here on disc brake judder that is attributable to thickness variations in the disc. These deviations from the ideal plane surface can be caused either by wear and corrosion or by thermal stresses (changes within the microstructure of the disc material). They are termed “cold judder” and “thermal judder” respectively. During braking, possible vibration excitation passes through a wide frequency band due to the coupling between the judder frequency and the wheel rotational speed, and thus, resonant frequencies of many vehicle components can be excited. This includes wheel suspension components and the steering column. In this paper, it is reported on extensive investigations into the topic of “cold judder”.
Technical Paper

Application of Vehicle Interior Noise Simulation (VINS) for NVH Analysis of a Passenger Car

2005-05-16
2005-01-2514
The overall perception of a vehicle's quality is significantly influenced by its interior noise characteristics. Therefore, it is important to strike a balance between “pleasant” and “dynamic” sound that fits the customer requirements with respect to vehicle brand and class [1]. Typically, a significant share of the interior vehicle noise is transferred through structure-borne paths. Hence, the powertrain mounting system plays an important role in designing the interior noise. This paper describes an application of the method of vehicle interior noise simulation (VINS) to achieve a characteristic interior sound. This approach is based on separate measurements (or calculations) of excitations and transfer functions and subsequent calculation of the interior noise in the time domain.
Technical Paper

Effect of HPDC Parameters on the Performance of Creep Resistant Alloys MRI153M and MRI230D

2005-04-11
2005-01-0334
The growing demand for the use of magnesium alloys in the production of automotive powertrain components led to the development of creep resistant diecasting alloys MRI153M and MRI230D. The present paper addresses the main high-pressure die casting parameters, which significantly affect the performance of components, produced of these new alloys. A systematic study was carried out in order to correlate die-casting parameters to the performance of new alloys. The results obtained clearly indicated that optimization of molten metal and die temperatures, injection profile parameters and lubrication mixtures allowed to improve the die castability and service properties of the new alloys and produce high performance components with intricate geometry. This was manifested by production of several practical demonstrators such as gearboxes, oil pans, oil pumps and crankcases.
Technical Paper

High Temperature Mg Alloys for Sand and Permanent Mold Casting Applications

2004-03-08
2004-01-0656
The need to reduce weight of large and heavy components used by the automotive and aerospace industries such as engine block, cylinder head cover and helicopter gearbox housing has led to the development of new Mg gravity casting alloys that provide adequate properties and cost effective solution. The new Mg gravity casting alloys are designed for high stressed components that operate at a temperature up to 300°C. These new alloys exhibit excellent mechanical properties and creep resistance in T-6 conditions. The present paper aims at introducing three new Mg gravity casting alloys designated MRI 201S, MRI 202S and MRI 203S, which were recently developed by the Magnesium Research Institute of DSM and VW. Apart from the excellent high temperature performance of these alloys, they provide adequate castability and dimension stability along with good weldability and corrosion resistance.
Technical Paper

A Comparative Study of New Magnesium Alloys Developed for Elevated Temperature Applications in Automotive Industry

2003-03-03
2003-01-0191
Recently several new magnesium alloys for high temperature applications have been developed with the aim to obtain an optimal combination of die castability, creep resistance, mechanical properties, corrosion performance and affordable cost. Unfortunately, it is very difficult to achieve an adequate combination of properties and in fact, most of the new alloys can only partially meet the required performance and cost. This paper aims at evaluating the current status of the newly developed alloys for powertrain applications. The paper also addresses the complexity of magnesium alloy development and illustrates the effect of alloying elements on properties and cost. In addition, the paper presents an attempt to set the position of each alloy in the integrated space of combined properties and cost
Technical Paper

New ways of fluid flow control in automobiles: Experience with exhaust gas aftertreatmetn control

2000-06-12
2000-05-0299
Flow control by fluidic devices - without moving parts - offers advantages of reliability and low cost. As an example of their automobile application based on authors'' long-time experience the paper describes a fluidic valve for switching exhaust gas flow in a NOx absorber into a by-pass during regeneration phase. The unique feature here is the fluidic valve being of monostable and of axisymmetric design, integrated into the absorber body. After development in aerodynamic laboratory, the final design was tested on engine test stand and finally in a car. This proved that the performance under high temperature and pulsation existing in exhaust systems is reliable and promising. Fluidic valves require, however, close matching with aerodynamic load. To optimize the exhaust system layout for the whole load-speed range and reaching minimum counter- pressure, both the components of exhaust system and control strategy have to be properly adopted.
Technical Paper

Update: Lighting Devices and Their Installation--Compatibility and Harmonization of international Requirements

1989-02-01
890691
Since the issuance of the SAE Paper 820 487 in Spring 82 some requirements and standards have been either newly issued, amended, changed or updated. Aerodynamic headlamps with replaceable halogen bulbs and center high mounted stoplamps have been introduced to mention some important changes. This presentation is a compilation of the current requirements and standards and shows the status of their harmonizations.
Technical Paper

The Volkswagen Vanagon Syncro - A Novel 4 WD Concept with the Mew 2.11 Watercooled Engine

1986-10-01
861350
The VOLKSWAGEN VANAGON SYNCRO is presented as a novel 4 WD. The visco coupling is the heart of the forward drive train. Main advantages are automatic performance distribution between the axles and self-locking at extreme revolution differences between front and rear. Another important advantage of the standard 2 WD Vanagon is the well-known excellent spring suspension and damping comfort which is not negatively effected by the 4 WD technique. The vehicle is equipped with a new more powerful engine with 2,1 liter displacement and 70 kW (95 HP) nominal power output which is based on the watercooled horizontally opposed engine program. Electronic fuel injection and ignition are integrated into a unique Volkswagen system called DIGIFANTR. Vehicle performance data and fuel economy figures are given in comparison with 2 WD designs and previously available engine power train combinations.
Technical Paper

Development of a Rigid Passenger Safety Compartment Made of Composite Material-Application for Front Door Frames

1986-03-01
860278
Based an extensive preparatory work and analyses, suggestions have been drawn up with regard to solutions for front door frames in the following regions:- door hinge mountings, seat belt anchorage mountings of B pillars, cross sections for the top of A pillars. At the same time as the design work, FEM calculations should be carried out to ensure optimization of the concepts. Economy reasons and experiences in production runs point towards a very strong fibre glass-reinforced door frames manufacutred in the SMC procress. The complete door frame is examined in comparison with geometrically similar sheet metal parts on a test frame and in the vehicle.
X