Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Trends and Effects of Child Restraint Systems Based on Volvo's Swedish Accident Database

1997-11-12
973299
A positive trend to more frequent use of child restraint systems (CRS) in Sweden, during the last 20 years, is shown in this report. During the same period, the overall injury risk, for different age groups of child occupants, has decreased substantially. This indicates the high effectiveness of the child restraint systems. Children need car occupant safety systems specially designed for their size. This paper clearly states the need for child safety systems and discusses benefits and drawbacks with regard to different restraints, ages and injuries. The analysis points out, that when a crash occurs, the maximum effect of a child restraint system is not reached, if the child is not using the correct system for their size. There is even a tendency that the injury risk increases when children switch from one restraint system to another, i.e. are at the youngest ages for which the specific restraint is recommended. The background data used, is based on Volvo's traffic accident research.
Technical Paper

Comparison of the Six-Year-Old Hybrid III, Part 572 and TNO P6 Child Dummies

1996-11-01
962437
The performance of three different six-year old dummies, the new Hybrid III six-year-old from First Technology Safety Systems, the Part 572 Subpart I and the TNO P6, was compared in a series of HYGE sled tests. The dummies were tested on aftermarket booster cushions in a Volvo 850 sled buck. Two different sled pulses were used: a Volvo 850 30 mph frontal crash pulse and an ECE R.44 pulse. The behavior of the dummies was compared for these two sled pulses. Motion analysis from high speed film was performed, showing the trajectories of the dummy heads. All dummies were fitted with triaxial accelerometers in the head, chest and pelvis. The Hybrid III was also equipped with a chest deflection transducer and Denton six-channel upper neck and five-channel lumbar spine load cells. The signals from a number of these sensors were compared.
X