Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Cooling Airflow Intake Positioning on the Aerodynamics of a Simplified Battery Electric Road Vehicle

2024-04-09
2024-01-2521
The transition towards battery electric vehicles (BEVs) has increased the focus of vehicle manufacturers on energy efficiency. Ensuring adequate airflow through the heat exchanger is necessary to climatize the vehicle, at the cost of an increase in the aerodynamic drag. With lower cooling airflow requirements in BEVs during driving, the front air intakes could be made smaller and thus be placed with greater freedom. This paper explores the effects on exterior aerodynamics caused by securing a constant cooling airflow through intakes at various positions across the front of the vehicle. High-fidelity simulations were performed on a variation of the open-source AeroSUV model that is more representative of a BEV configuration. To focus on the exterior aerodynamic changes, and under the assumption that the cooling requirements would remain the same for a given driving condition, a constant mass flow boundary condition was defined at the cooling airflow inlets and outlets.
Technical Paper

A Strategy for Developing an Inclusive Load Case for Verification of Squeak and Rattle Noises in the Car Cabin

2021-08-31
2021-01-1088
Squeak and rattle (S&R) are nonstationary annoying and unwanted noises in the car cabin that result in considerable warranty costs for car manufacturers. Introduction of cars with remarkably lower background noises and the recent emphasis on electrification and autonomous driving further stress the need for producing squeak- and rattle-free cars. Automotive manufacturers use several road disturbances for physical evaluation and verification of S&R. The excitation signals collected from these road profiles are also employed in subsystem shaker rigs and virtual simulations that are gradually replacing physical complete vehicle test and verification. Considering the need for a shorter lead time and the introduction of optimisation loops, it is necessary to have efficient and inclusive excitation load cases for robust S&R evaluation.
Technical Paper

Experimental Evaluation of Novel Thermal Barrier Coatings in a Single Cylinder Light Duty Diesel Engine

2019-09-09
2019-24-0062
The objective of this investigation was to improve the thermal properties of plasma sprayed thermal barrier coatings (TBC) for internal combustion engines. There is a need for further reduction of thermal conductivity and volumetric heat capacity and the negative effects on heat loss and combustion phasing of surface roughness and permeable porosity, typical for plasma sprayed coatings, should be minimized. Four measures for improvement of TBC properties were evaluated: i) modification of the coating's microstructure by using a novel suspension plasma spraying method, ii) application of gadolinium-zirconate, a novel ceramic material with low thermal conductivity, iii) polishing of the coating to achieve low surface roughness, and iv) sealing of the porous coating surface with a polysilazane. Six coating variants with different combinations of the selected measures were applied on the piston crown and evaluated in a single cylinder light duty diesel engine.
Technical Paper

Evaluating a Vehicle Climate Control System with a Passive Sensor Manikin coupled with a Thermal Comfort Model

2018-04-03
2018-01-0065
In a previous study, a passive sensor (HVAC) manikin coupled with a human thermal model was used to predict the thermal comfort of human test participants. The manikin was positioned among the test participants while they were collectively exposed to a mild transient heat up within a thermally asymmetric chamber. Ambient conditions were measured using the HVAC manikin’s distributed sensor system, which measures air velocity, air temperature, radiant heat flux, and relative humidity. These measurements were supplied as input to a human thermal model to predict thermophysiological response and subsequently thermal sensation and comfort. The model predictions were shown to accurately reproduce the group trends and the “time to comfort” at which a transition occurred from a state of thermal discomfort to comfort. In the current study, the effectiveness of using a coupled HVAC manikin-model system to evaluate a vehicle climate control system was investigated.
Journal Article

Coupling a Passive Sensor Manikin with a Human Thermal Comfort Model to Predict Human Perception in Transient and Asymmetric Environments

2017-03-28
2017-01-0178
Passive sensor (HVAC) manikins have been developed to obtain high-resolution measurements of environmental conditions across a representative human body form. These manikins incorporate numerous sensors that measure air velocity, air temperature, radiant heat flux, and relative humidity. The effect of a vehicle’s climate control system on occupant comfort can be characterized from the data collected by an HVAC manikin. Equivalent homogeneous temperature (EHT) is often used as a first step in a cabin comfort analysis, particularly since it reduces a large data set to a single intuitive number. However, the applicability of the EHT for thermal comfort assessment is limited since it does not account for human homeostasis, i.e., that the human body actively counter-balances heat flow with the environment to maintain a constant core temperature. For this reason, a thermo-physiological human model is required to accurately simulate the body’s dynamic response to a changing environment.
Technical Paper

Battery Parameter Estimation from Recorded Fleet Data

2016-10-17
2016-01-2360
Existing battery parameter model structures are evaluated by estimating model parameters on real driving data applying standard system identification methods. Models are then evaluated on the test data in terms of goodness of fit and RMSE in voltage predictions. This is different from previous battery model evaluations where a common approach is to train parameters using standardized tests, e.g. hybrid pulse-power capability (HPPC), with predetermined charge and discharge sequences. Equivalent linear circuit models of different complexity were tested and evaluated in order to identify parameter dependencies at different state of charge levels and temperatures. Models are then used to create voltage output given a current, state of charge and temperature. The average accuracy of modelling the DC bus voltage provides a model goodness of fit average higher than 90% for a single RC circuit model.
Technical Paper

Experimental Comparison of Heat Losses in Stepped-Bowl and Re-Entrant Combustion Chambers in a Light Duty Diesel Engine

2016-04-05
2016-01-0732
Heat loss is one of the greatest energy losses in engines. More than half of the heat is lost to cooling media and exhaust losses, and they thus dominate the internal combustion engine energy balance. Complex processes affect heat loss to the cylinder walls, including gas motion, spray-wall interaction and turbulence levels. The aim of this work was to experimentally compare the heat transfer characteristics of a stepped-bowl piston geometry to a conventional re-entrant diesel bowl studied previously and here used as the baseline geometry. The stepped-bowl geometry features a low surface-to-volume ratio compared to the baseline bowl, which is considered beneficial for low heat losses. Speed, load, injection pressure, swirl level, EGR rate and air/fuel ratio (λ) were varied in a multi-cylinder light duty engine operated in conventional diesel combustion (CDC) mode.
Technical Paper

Organic Evolution of Development Organizations - An Experience Report

2016-04-05
2016-01-0028
In areas such as Active Safety, new technologies, designs (e.g. AUTOSAR) and methods are introduced at a rapid pace. To address the new demands, and also requirements on Functional Safety imposed by ISO 26262, the support for engineering methods, including tools and data management, needs to evolve as well. Generic and file-based data management tools, like spreadsheet tools, are popular in the industry due to their flexibility and legacy in the industry but provide poor control and traceability, while rigid and special-purpose tools provide structure and control of data but with limited evolvability. As organizations become agile, the need for flexible data management increases. Since products become more complex and developed in larger and distributed teams, the need for more unified, controlled, and consistent data increases.
Technical Paper

Thermal and Chemical Deactivation of Three-Way Catalysts: Comparison of Road-, Fuel-Cut and SAI- Aged Catalysts

2015-04-14
2015-01-1000
The objective of this study was to investigate which of the artificial aging cycles available in the automotive industry that causes major deactivation of three-way catalysts (TWCs) and can be used to obtain an aged catalyst similar to the road aged converter (160 000km). Standard bench cycle (SBC) aging with secondary air injection (SAI) covered aging with various mass flows - a flow from three cylinders into one catalyst system and a flow from three cylinders into two parallel connected catalysts. For rapid catalyst bench aging, secondary air injection is a very efficient tool to create exotherms. Furthermore, the effect on catalytic activity of SAI aging with poisons from oil and fuel dopants (P, Ca, Zn) was investigated. The catalysts were thoroughly characterized in light-off and oxygen storage capacity measurements, emission conversion as a function of lambda and load variation was determined.
Journal Article

Measurements of Energy Used for Vehicle Interior Climate

2014-11-01
2014-01-9129
Fuel consumption of vehicles has received increased attention in recent years; however one neglected area that can have a large effect on this is the energy usage for the interior climate. This study aims to investigate the energy usage for the interior climate for different conditions by measurements on a complete vehicle. Twelve different NEDC tests in different temperatures and thermal states of the vehicle were completed in a climatic wind tunnel. Furthermore one temperature sweep from 43° to −18°C was also performed. The measurements focused on the heat flow of the air, from its sources, to its sink, i.e. compartment. In addition the electrical and mechanical loads of the climate system were included. The different sources of heating and cooling were, for the tested powertrain, waste heat from the engine, a fuel operated heater, heat pickup of the air, evaporator cooling and cooling from recirculation.
Technical Paper

Severe Frontal Collisions with Partial Overlap - Two Decades of Car Safety Development

2013-04-08
2013-01-0759
Frontal Severe Partial Overlap Collisions (SPOC) also called small overlap crashes pose special challenges with respect to structural design as well as occupant protection. In the early 1990s, the SPOC test method was developed addressing 20-40% overlap against a fixed rigid barrier with initial velocities up to 65 km/h. The knowledge gained has been used in the design of Volvo vehicles since then. Important design principles include front side members orientated along the wheel envelopes together with a strong support structure utilizing a space frame principle with beams loaded mainly in tension and compression. This novel setup was first introduced in the 850-model in 1991 and has been refined and patented (2001) in later Volvo front structures. Among the design principles are multiple front side members on each side, helping energy absorption efficiency and robustness.
Journal Article

The Effect of Tumble Flow on Efficiency for a Direct Injected Turbocharged Downsized Gasoline Engine

2011-09-11
2011-24-0054
Direct gasoline injection combined with turbo charging and down sizing is a cost effective concept to meet future requirements for emission reduction as well as increased efficiency for passenger cars. It is well known that turbulence induced by in-cylinder air motion can influence efficiency. In this study, the intake-generated flow field was varied for a direct injected turbo charged concept, with the intent to evaluate if further increase in tumble potentially could lead to higher efficiency compared to the baseline. A single cylinder head with flow separating walls in the intake ports and different restriction plates was used to allow different levels of tumble to be experimentally evaluated in a single cylinder engine. The different levels of tumble were quantified by flow rig experiments.
Journal Article

A Study on Acoustical Time-Domain Two-Ports Based on Digital Filters with Application to Automotive Air Intake Systems

2011-05-17
2011-01-1522
Analysis of pressure pulsations in ducts is an active research field within the automotive industry. The fluid dynamics and the wave transmission properties of internal combustion (IC) engine intake and exhaust systems contribute to the energy efficiency of the engines and are hence important for the final amount of CO₂ that is emitted from the vehicles. Sound waves, originating from the pressure pulses caused by the in- and outflow at the engine valves, are transmitted through the intake and exhaust system and are an important cause of noise pollution from road traffic at low speeds. Reliable prediction methods are of major importance to enable effective optimization of gas exchange systems. The use of nonlinear one-dimensional (1D) gas dynamics simulation software packages is widespread within the automotive industry. These time-domain codes are mainly used to predict engine performance parameters such as output torque and power but can also give estimates of radiated orifice noise.
Technical Paper

Influences of Different Front and Rear Wheel Designs on Aerodynamic Drag of a Sedan Type Passenger Car

2011-04-12
2011-01-0165
Efforts towards ever more energy efficient passenger cars have become one of the largest challenges of the automotive industry. This involves numerous different fields of engineering, and every finished model is always a compromise between different requirements. Passenger car aerodynamics is no exception; the shape of the exterior is often dictated by styling, engine bay region by packaging issues etcetera. Wheel design is also a compromise between different requirements such as aerodynamic drag and brake cooling, but as the wheels and wheel housings are responsible for up to a quarter of the overall aerodynamic drag on a modern passenger car, it is not surprising that efforts are put towards improving the wheel aerodynamics.
Technical Paper

Development of the Euro 5 Combustion System for Volvo Cars' 2.4.I Diesel Engine

2009-04-20
2009-01-1450
The development of a new combustion system for a light-duty diesel engine is presented. The soot-NOx trade-off is significantly improved with maintained or improved efficiency. This is accomplished only by altering the combustion chamber geometry, and thereby the in-cylinder flow. The bowl geometry is developed in CFD and validated in single cylinder tests. Tests and simulations align remarkably well. Under identical conditions in the engine the new combustion chamber decreases smoke by 11-27%, NOx by 2-11%, and maintains efficiency as compared to the baseline geometry. The injector nozzle is matched to the new bowl using design of experiments (DoE). By this method transfer functions are obtained that can be used to optimize the system using analytical tools. The emissions show a complex dependence on the nozzle geometry. The emission dependence on nozzle geometry varies greatly over the engine operating range.
Journal Article

An Evaluation of Different Combustion Strategies for SI Engines in a Multi-Mode Combustion Engine

2008-04-14
2008-01-0426
Future pressures to reduce the fuel consumption of passenger cars may require the exploitation of alternative combustion strategies for gasoline engines to replace, or use in combination with the conventional stoichiometric spark ignition (SSI) strategy. Possible options include homogeneous lean charge spark ignition (HLCSI), stratified charge spark ignition (SCSI) and homogeneous charge compression ignition (HCCI), all of which are intended to reduce pumping and thermal losses. In the work presented here four different combustion strategies were evaluated using the same engine: SSI, HLCSI, SCSI and HCCI. HLCSI was achieved by early injection and operating the engine lean, close to its stability limits. SCSI was achieved using the spray-guided technique with a centrally placed multi-hole injector and spark-plug. HCCI was achieved using a negative valve overlap to trap hot residuals and thus generate auto-ignition temperatures at the end of the compression stroke.
Technical Paper

Testing and Verification of Adaptive Cruise Control and Collision Warning with Brake Support by Using HIL Simulations

2008-04-14
2008-01-0728
This paper presents how hardware in the loop (HIL) simulations have been used for testing during the development of the adaptive cruise control (ACC) and collision warning with brake support (CWBS) functions implemented in the Volvo S80. Both the brake system controller and the controller where the ACC and CWBS functions were implemented were tested. The HIL simulator was used for automated batch simulations in which different controller software releases were analyzed from both system, fail-safe and functional performance perspectives. This paper presents the challenges and the benefits of using HIL simulations when developing distributed active safety functions. Some specific simulation results are analyzed and discussed. The conclusion shows that although it is difficult and time-consuming to develop a complete HIL simulation environment for active safety functions such as ACC and CWBS, the benefits justify the investment.
Technical Paper

Ion Current Sensing in an Optical HCCI Engine with Negative Valve Overlap

2007-01-23
2007-01-0009
Ion current sensors have high potential utility for obtaining feedback signals directly from the combustion chamber in internal combustion engines. This paper describes experiments performed in a single-cylinder optical engine operated in HCCI mode with negative valve overlap to explore this potential. A high-speed CCD camera was used to visualize the combustion progress in the cylinder, and the photographs obtained were compared with the ion current signals. The optical data indicate that the ions responsible for the chemiluminescence from the HCCI combustion have to be in contact with the sensing electrode for an ion current to start flowing through the measurement circuit. This also means that there will be an offset between the time at which 50% of the fuel mass has burned and 50% of the ion current peak value is reached, which is readily explained by the results presented in the paper.
Technical Paper

Evaluation of Hazard Identification Methods in the Automotive Domain

2006-10-16
2006-21-0045
Many automotive electronic systems must be developed using a safety process. A preliminary hazard analysis is a first and an important step in such a process. This experimental study evaluates two methods for hazard identification using an electrical steering column lock system. Both methods are found to be applicable for hazard identification in an automotive context. It is also concluded that the induction with the failure modes method is less time consuming and easier to use than the method based on induction with generic low level hazards. Further, two proposals are presented to improve efficiency and consistency, reuse of generic hazards by component profiles and a domain specific catalogue of vehicle phases.
Technical Paper

The Door Mounted Inflatable Curtain

2006-04-03
2006-01-1437
It has been shown that Inflatable Curtains have the potential to reduce head injuries in side impacts and the system has accordingly been introduced on a growing number of car models. There is also a potential benefit in rollover situations. This paper only consider performance in situations with belted occupants. To date, it has not been possible to implement an Inflatable Curtain in convertible vehicles because they lack a roof. The challenge of the Door Mounted Inflatable Curtain (DMIC) has been to overcome the lack of support and fixation possibilities offered by a roof. This paper includes a description of the DMIC and how it was integrated into the vehicle structure. The paper will also show how to create the space and support needed to utilize the internal stiffness and make it possible to fill the bag in time. The impact attenuation and ejection protection functions of the DMIC will be demonstrated.
X