Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Cooling Airflow Intake Positioning on the Aerodynamics of a Simplified Battery Electric Road Vehicle

2024-04-09
2024-01-2521
The transition towards battery electric vehicles (BEVs) has increased the focus of vehicle manufacturers on energy efficiency. Ensuring adequate airflow through the heat exchanger is necessary to climatize the vehicle, at the cost of an increase in the aerodynamic drag. With lower cooling airflow requirements in BEVs during driving, the front air intakes could be made smaller and thus be placed with greater freedom. This paper explores the effects on exterior aerodynamics caused by securing a constant cooling airflow through intakes at various positions across the front of the vehicle. High-fidelity simulations were performed on a variation of the open-source AeroSUV model that is more representative of a BEV configuration. To focus on the exterior aerodynamic changes, and under the assumption that the cooling requirements would remain the same for a given driving condition, a constant mass flow boundary condition was defined at the cooling airflow inlets and outlets.
Technical Paper

Calibration Procedure for Measurement-Based Fast Running Model for Hardware-in-the-Loop Powertrain Systems

2020-04-14
2020-01-0254
The requirements set for the next-generation powertrain systems (e.g. performance and emissions) are becoming increasingly stringent with ever-shortening time-to-markets at reduced costs. To remain competitive automotive companies are progressively relying on model-driven development and virtual testing. Virtual test benches, such as HiL (Hardware-in the-Loop) simulators, are powerful tools to reduce the amount of physical testing and speed up engine software calibration process. The introduction of these technologies places new, often conflicting demands (such as higher predictability, faster simulation speed, and reduced calibration effort) upon simulation models used at HiL test benches. The new models are also expected to offer compliance to industry standards, performance and usability to further increase the usage of virtual tests in powertrain development.
Technical Paper

A Mild Hybrid SIDI Turbo Passenger Car Engine with Organic Rankine Cycle Waste Heat Recovery

2019-09-09
2019-24-0194
While striving for more fuel-efficient vehicles, all possible measures are considered to increase the efficiency of the combustion engine powertrain. 48V mild hybrid technology is one such measure, SIDI (Spark Ignited Direct Injection) engines with Miller technology are another, while recovering energy from the engine’s waste heat (WHR) is yet another option. In this paper, results will be published from an advanced engineering project at Volvo Cars including all of these components. An ethanol based Organic Rankine Cycle (ORC) WHR-system was successfully built around a 4-cylinder, 2.0 litre SIDI-engine, including 48V mild hybrid technology, with vehicle packaging considered. A dedicated control system was also developed for the ORC system including communication between it and the engine. The ORC system uses the engine exhaust as the heat source, for which a purpose-built evaporator was designed and built to fit in the vehicle tunnel.
Technical Paper

Experimental Evaluation of Novel Thermal Barrier Coatings in a Single Cylinder Light Duty Diesel Engine

2019-09-09
2019-24-0062
The objective of this investigation was to improve the thermal properties of plasma sprayed thermal barrier coatings (TBC) for internal combustion engines. There is a need for further reduction of thermal conductivity and volumetric heat capacity and the negative effects on heat loss and combustion phasing of surface roughness and permeable porosity, typical for plasma sprayed coatings, should be minimized. Four measures for improvement of TBC properties were evaluated: i) modification of the coating's microstructure by using a novel suspension plasma spraying method, ii) application of gadolinium-zirconate, a novel ceramic material with low thermal conductivity, iii) polishing of the coating to achieve low surface roughness, and iv) sealing of the porous coating surface with a polysilazane. Six coating variants with different combinations of the selected measures were applied on the piston crown and evaluated in a single cylinder light duty diesel engine.
Technical Paper

Strive for Zero Emissions Impact from Hybrids

2019-09-09
2019-24-0146
Since several decades, passenger cars and light duty vehicles (LDV) with spark-ignited engines reach full pollutant conversion during warm up conditions; the major challenge has been represented by the cold start and warming up strategies. The focus on technology developments of exhaust after treatment systems have been done in the thermal management in order to reach the warm up conditions as soon as possible. A new challenge is now represented by the Real Driving Emission (RDE) Regulation as this bring more various, and not any longer cycle defined, cold start conditions. On the other hand, once the full conversion has been reached, it would be beneficial for many Exhaust After Treatment System (EATS) components, e.g. for overall durability if the exhaust gas temperature could be lowered. To take significant further emission steps, approaching e.g. zero emission concepts, we investigate the use of Electrical Heating Catalyst (EHC) also including pre-heating.
Technical Paper

Uncertainty Quantification of Flow Uniformity Measurements in a Slotted Wall Wind Tunnel

2019-04-02
2019-01-0656
The need for a more complete understanding of the flow behavior in aerodynamic wind tunnels has increased as they have become vital tools not only for vehicle development, but also for vehicle certification. One important aspect of the behavior is the empty test section flow, which in a conventional tunnel should be as uniform as possible. In order to assess the uniformity and ensure consistent behavior over time, accurate measurements need to be performed regularly. Furthermore, the uncertainties and errors of the measurements need to be minimized in order to resolve small non-uniformities. In this work, the quantification of the measurement uncertainties from the full measurement chain of the new flow uniformity measurement rig for the Volvo Cars aerodynamic wind tunnel is presented. The simulation based method used to account for flow interference of the probe mount is also discussed.
Technical Paper

Interaction between Fuel Jets and Prevailing Combustion During Closely-Coupled Injections in an Optical LD Diesel Engine

2019-04-02
2019-01-0551
Two imaging techniques are used to investigate the interaction between developed combustion from earlier injections and partially oxidized fuel (POF) of a subsequent injection. The latter is visualized by using planar laser induced fluorescence (PLIF) of formaldehyde and poly-cyclic aromatic hydrocarbons. High speed imaging captures the natural luminescence (NL) of the prevailing combustion. Three different fuel injection strategies are studied. One strategy consists of two pilot injections, with modest separations after each, followed by single main and post injections. Both of the other two strategies have three pilots followed by single main and post injections. The separations after the second and third pilots are several times shorter than in the reference case (making them closely-coupled). The closely-coupled cases have more linear heat release rates (HRR) which lead to much lower combustion noise levels.
Journal Article

The Effects of Wheel Design on the Aerodynamic Drag of Passenger Vehicles

2019-04-02
2019-01-0662
Approximately 25 % of a passenger vehicle’s aerodynamic drag comes directly or indirectly from its wheels, indicating that the rim geometry is highly relevant for increasing the vehicle’s overall energy efficiency. An extensive experimental study is presented where a parametric model of the rim design was developed, and statistical methods were employed to isolate the aerodynamic effects of certain geometric rim parameters. In addition to wind tunnel force measurements, this study employed the flowfield measurement techniques of wake surveys, wheelhouse pressure measurements, and base pressure measurements to investigate and explain the most important parameters’ effects on the flowfield. In addition, a numerical model of the vehicle with various rim geometries was developed and used to further elucidate the effects of certain geometric parameters on the flow field.
Technical Paper

Evaluating a Vehicle Climate Control System with a Passive Sensor Manikin coupled with a Thermal Comfort Model

2018-04-03
2018-01-0065
In a previous study, a passive sensor (HVAC) manikin coupled with a human thermal model was used to predict the thermal comfort of human test participants. The manikin was positioned among the test participants while they were collectively exposed to a mild transient heat up within a thermally asymmetric chamber. Ambient conditions were measured using the HVAC manikin’s distributed sensor system, which measures air velocity, air temperature, radiant heat flux, and relative humidity. These measurements were supplied as input to a human thermal model to predict thermophysiological response and subsequently thermal sensation and comfort. The model predictions were shown to accurately reproduce the group trends and the “time to comfort” at which a transition occurred from a state of thermal discomfort to comfort. In the current study, the effectiveness of using a coupled HVAC manikin-model system to evaluate a vehicle climate control system was investigated.
Technical Paper

Development and Validation of a Multicomponent Fuel Spray Model (VSB2 Model)

2017-10-08
2017-01-2197
Owing to increased interest in blended fuels for automotive applications, a great deal of understanding is sought for the behavior of multicomponent fuel sprays. This sets a new requirement on spray model since the volatility of the fuel components in a blend can vary substantially. It calls for careful solution to implement the differential evaporation process concerning thermodynamic equilibrium while maintaining a robust solution. This work presents the Volvo Stochastic Blob and Bubble (VSB2) spray model for multicomponent fuels. A direct numerical method is used to calculate the evaporation of multicomponent fuel droplets. The multicomponent fuel model is implemented into OpenFoam CFD code and the case simulated is a constant volume combustion vessel. The CFD code is used to calculate liquid penetration length for surrogate diesel (n-dodecane)-gasoline (iso-octane) blend and the result is compared with experimental data.
Technical Paper

Validation of the VSB2 Spray Model for Ethanol under Diesel like Conditions

2017-10-08
2017-01-2193
When developing new combustion concepts, CFD simulations is a powerful tool. The modeling of spray formation is a challenging but important part when it comes to CFD modelling of non-premixed combustion. There is a large difference in the accuracy and robustness among different spray models and their implementation in different CFD codes. In the work presented in this paper a spray model, designated as VSB2 has been implemented in OpenFOAM. VSB2 differ from traditional spray models by replacing the Lagrangian parcels with stochastic blobs. The stochastic blobs consists of a droplet size distribution rather than equal sized droplets, as is the case with the traditional parcel. The VSB2 model has previously been thoroughly validated for spray formation and combustion of n-heptane. The aim of this study was to validate the VSB2 spray model for ethanol spray formation and combustion as a step in modelling dual-fuel combustion with alcohol and diesel.
Technical Paper

Comparing Dynamic Programming Optimal Control Strategies for a Series Hybrid Drivetrain

2017-10-08
2017-01-2457
A two-state forward dynamic programming algorithm is evaluated in a series hybrid drive-train application with the objective to minimize fuel consumption when look-ahead information is available. The states in the new method are battery state-of-charge and engine speed. The new method is compared to one-state dynamic programming optimization methods where the requested generator power is found such that the fuel consumption is minimized and engine speed is given by the optimum power-speed efficiency line. The other method compared is to run the engine at a given operating point where the system efficiency is highest, finding the combination of engine run requests over the drive-cycle that minimizes the fuel consumption. The work has included the engine torque and generator power as control signals and is evaluated in a full vehicle-simulation model based on the Volvo Car Corporation VSIM tool.
Technical Paper

Influence of Nozzle Eccentricity on Spray Structures in Marine Diesel Sprays

2017-09-04
2017-24-0031
Large two-stroke marine Diesel engines have special injector geometries, which differ substantially from the configurations used in most other Diesel engine applications. One of the major differences is that injector orifices are distributed in a highly non-symmetric fashion affecting the spray characteristics. Earlier investigations demonstrated the dependency of the spray morphology on the location of the spray orifice and therefore on the resulting flow conditions at the nozzle tip. Thus, spray structure is directly influenced by the flow formation within the orifice. Following recent Large Eddy Simulation resolved spray primary breakup studies, the present paper focuses on spray secondary breakup modelling of asymmetric spray structures in Euler-Lagrangian framework based on previously obtained droplet distributions of primary breakup.
Journal Article

Performance Studies and Correlation between Vehicle- and Rapid- Aged Commercial Lean NOx Trap Catalysts

2017-03-28
2017-01-0940
Even though substantial improvements have been made for the lean NOx trap (LNT) catalyst in recent years, the durability still remains problematic because of the sulfur poisoning and sintering of the precious metals at high operating temperatures. Hence, commercial LNT catalysts were aged and tested in order to investigate their performance and activity degradation compared to the fresh catalyst, and establish a proper correlation between the aging methods used. The target of this study is to provide useful information for regeneration strategies and optimize the catalyst management for better performance and durability. With this goal in mind, two different aging procedures were implemented in this investigation. A catalyst was vehicle-aged in the vehicle chassis dynamometer for 100000 km, thus exposed to real conditions. Whereas, an accelerated aging method was used by subjecting a fresh LNT catalyst at 800 °C for 24 hours in an oven under controlled conditions.
Journal Article

Force Based Measurement Method for Cooling Flow Quantification

2017-03-28
2017-01-1520
Quantification of heat exchanger performance in its operative environment is in many engineering applications an essential task, and the air flow rate through the heat exchanger core is an important optimizing parameter. This paper explores an alternative method for quantifying the air flow rate through compact heat exchangers positioned in the underhood of a passenger car. Unlike conventional methods, typically relying on measurements of direct flow characteristics at discrete probe locations, the proposed method is based on the use of load-cells for direct measurement of the total force acting on the heat exchanger. The air flow rate is then calculated from the force measurement. A direct comparison with a conventional pressure based method is presented as both methods are applied on a passenger car’s radiator tested in a full scale wind tunnel using six different grill configurations. The measured air flow rates are presented and discussed over a wide range of test velocities.
Technical Paper

Investigation of Performance Differences and Control Synthesis for Servo-Controlled and Vacuum-Actuated Wastegates

2017-03-28
2017-01-0592
1 Turbocharging plays an important role in the downsizing of engines. Model-based approaches for boost control are going to increasing the necessity for controlling the wastegate flow more accurately. In today’s cars, the wastegate is usually only controlled with a duty cycle and without position feedback. Due to nonlinearities and varying disturbances a duty cycle does not correspond to a certain position. Currently the most frequently used feedback controller strategy is to use the boost pressure as the controller reference. This means that there is a large time constant from actuation command to effect in boost pressure, which can impair dynamic performance. In this paper, the performance of an electrically controlled vacuum-actuated waste-gate, subsequently referred to as vacuum wastegate, is compared to an electrical servo-controlled wastegate, also referred to as electric wastegate.
Technical Paper

Development of the Combustion System for Volvo Cars Euro6d VEA Diesel Engine

2017-03-28
2017-01-0713
The demands for a future diesel engine in terms of emission compliance, CO2 emissions, performance and cost effectiveness set new requirements for the development process of the combustion system. This paper focuses on the development of the next generation Volvo Cars diesel combustion system, which should comply with Euro 6d including Real Driving Emissions (RDE), with emphasis on the novel methods applied throughout the process. The foundation of a high performing combustion system is formed by first determining the requirements for the system, after which the key factors that affect system performance are selected, such as the charge motion, combustion chamber geometry and injector nozzle geometry. Based on the requirements, a robust charge motion with desired flow characteristics is defined. A new automated CFD optimization process for combustion chamber geometry and spray target is developed.
Journal Article

Coupling a Passive Sensor Manikin with a Human Thermal Comfort Model to Predict Human Perception in Transient and Asymmetric Environments

2017-03-28
2017-01-0178
Passive sensor (HVAC) manikins have been developed to obtain high-resolution measurements of environmental conditions across a representative human body form. These manikins incorporate numerous sensors that measure air velocity, air temperature, radiant heat flux, and relative humidity. The effect of a vehicle’s climate control system on occupant comfort can be characterized from the data collected by an HVAC manikin. Equivalent homogeneous temperature (EHT) is often used as a first step in a cabin comfort analysis, particularly since it reduces a large data set to a single intuitive number. However, the applicability of the EHT for thermal comfort assessment is limited since it does not account for human homeostasis, i.e., that the human body actively counter-balances heat flow with the environment to maintain a constant core temperature. For this reason, a thermo-physiological human model is required to accurately simulate the body’s dynamic response to a changing environment.
Journal Article

Investigating the Limits of Charge Motion and Combustion Duration in a High-Tumble Spark-Ignited Direct-Injection Engine

2016-10-17
2016-01-2245
This paper describes the experimental study of a tumble-flap mounted in the intake port of a single-cylinder spark-ignited gasoline engine. The research question addressed was whether an optimal tumble level could be found for the combustion system under investigation. Indicated fuel consumption was measured for a number of part-load operating points with the tumble-flap either open or closed. The experimental results were subjected to an energy balance analysis to understand which portion of the fuel energy was converted to work and how much was lost by incomplete combustion, heat losses to walls and to the exhaust gases, as well as to pumping losses. Closing the tumble-flap resulted in reduced fuel consumption only in a small area of the operating map: only at low-speed, low-load operation, a benefit could be obtained.
Technical Paper

Engine Presence in Diesel Engine Passenger Cars

2016-06-15
2016-01-1786
Highly refined NVH (Noise, Vibration and Harshness) is a key attribute for premium segment passenger cars. All noise sources such as powertrain, tires, wind, climate unit and etc. must be well balanced and at such a low level that the customer expectations are met or exceeded. However, not only are the NVH levels of importance but the character of the noise must also meet the high demands from premium car customers. This is especially true for diesel engines which historically have been more prone to have a less refined engine noise character than petrol engines. This paper will describe an investigation of what is defined as “engine presence” in four-cylinder diesel engine cars. The scope is to define a method for consistent subjective assessment of engine presence and to find the relationship and investigate the correlation between the “perceived loudness”, “perceived harshness” and the overall engine presence interior of the car.
X