Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Ultra-High Fuel Pressure in GDI to Suppress Particulate Formation during Warming-Up and Load Transients

2023-04-11
2023-01-0239
This study investigates if particulates from a GDI engine can be significantly suppressed by use of ultra-high injection pressures under 2 different engine conditions known to be associated with high particulate numbers (PN): warm-up and transients. Experiments were carried out in a single-cylinder GDI engine equipped with an endoscope connected to a high-speed camera to enable combustion visualization. To mimic the warming-up, the coolant temperature was varied between 20 °C and 90 °C. A Diesel injector with modified nozzle was used and the injection pressures were varied between 400 and 1500 bar. The results revealed that increasing the fuel injection pressure decreased engine out HC and PN under warming-up conditions. However, the coolant water temperature was the most dominant factor affecting the emissions. For coolant temperature of 20 °C, the use of 1500 bar fuel injection pressure in comparison to lower fuel pressures resulted in significantly lower PN.
Technical Paper

Modeling of Engine Aftertreatment System Cooling for Hybrid Vehicles

2019-04-02
2019-01-0989
Exhaust aftertreatment systems are essential components in modern powertrains, needed to reach the low legislated levels of NOx and soot emissions. A well designed diesel engine exhaust aftertreatment system can have NOx conversion rates above 95%. However, to achieve high conversion the aftertreatment system must be warm. Because of this, large parts of the total NOx emissions come from cold starts where the engine has been turned off long enough for the aftertreatment system to cool down and loose its capacity to reduce NOx. It is therefore important to understand how the aftertreatment cools down when the engine in turned off. Experimental data for a catalyst cool-down process is presented and analyzed. The analysis shows that it is important to capture the spatial distribution of temperatures both in axial and radial directions. The data and analysis are used to design a catalyst thermal model that can be used for model based catalyst temperature monitoring and control.
Journal Article

Analysis of the Effect of Vehicle Platooning on the Optimal Control of a Heavy Duty Engine Thermal System

2019-04-02
2019-01-1259
One promising method for reducing fuel consumption and emissions, particularly in heavy duty trucks, is platooning. As the distance between vehicles decreases, the following vehicles will experience less aerodynamic drag on the front of the vehicle. However, reducing the velocity of the air contacting the front of the vehicle could have adverse effects on the temperature of the engine. To compensate for this effect, the energy consumption of the engine cooling system might increase, ultimately limiting the overall improvements obtained with platooning. Understanding the coupling between drag reduction and engine cooling load requirement is key for successfully implementing platooning strategies. Additionally, in a Connected and Automated Vehicle (CAV) environment, where information of the future engine load becomes available, the operation of the cooling system can be optimized in order to achieve the maximum fuel consumption reduction.
Journal Article

Optimization of an Advanced Combustion Strategy Towards 55% BTE for the Volvo SuperTruck Program

2017-03-28
2017-01-0723
This paper describes a novel design and verification process for analytical methods used in the development of advanced combustion strategies in internal combustion engines (ICE). The objective was to improve brake thermal efficiency (BTE) as part of the US Department of Energy SuperTruck program. The tools and methods herein discussed consider spray formation and injection schedule along with piston bowl design to optimize combustion efficiency, air utilization, heat transfer, emission, and BTE. The methodology uses a suite of tools to optimize engine performance, including 1D engine simulation, high-fidelity CFD, and lab-scale fluid mechanic experiments. First, a wide range of engine operating conditions are analyzed using 1-D engine simulations in GT Power to thoroughly define a baseline for the chosen advanced engine concept; secondly, an optimization and down-select step is completed where further improvements in engine geometries and spray configurations are considered.
Journal Article

Force Based Measurement Method for Cooling Flow Quantification

2017-03-28
2017-01-1520
Quantification of heat exchanger performance in its operative environment is in many engineering applications an essential task, and the air flow rate through the heat exchanger core is an important optimizing parameter. This paper explores an alternative method for quantifying the air flow rate through compact heat exchangers positioned in the underhood of a passenger car. Unlike conventional methods, typically relying on measurements of direct flow characteristics at discrete probe locations, the proposed method is based on the use of load-cells for direct measurement of the total force acting on the heat exchanger. The air flow rate is then calculated from the force measurement. A direct comparison with a conventional pressure based method is presented as both methods are applied on a passenger car’s radiator tested in a full scale wind tunnel using six different grill configurations. The measured air flow rates are presented and discussed over a wide range of test velocities.
Technical Paper

Numerical Investigation of Natural Convection in a Simplified Engine Bay

2016-04-05
2016-01-1683
Presented are results from numerical investigations of buoyancy driven flow in a simplified representation of an engine bay. A main motivation for this study is the necessity for a valid correlation of results from numerical methods and procedures with physical measurements in order to evaluate the accuracy and feasibility of the available numerical tools for prediction of natural convection. This analysis is based on previously performed PIV and temperature measurements in a controlled physical setup, which reproduced thermal soak conditions in the engine compartment as they occur for a vehicle parked in a quiescent ambient after sustaining high thermal loads. Thermal soak is an important phenomenon in the engine bay primarily driven by natural convection and radiation after there had been a high power demand on the engine. With the cooling fan turned off and in quiescent environment, buoyancy driven convection and radiation are the dominating modes of heat transfer.
Journal Article

Simulation of Energy Used for Vehicle Interior Climate

2015-12-01
2015-01-9116
In recent years fuel consumption of passenger vehicles has received increasing attention by customers, the automotive industry, regulatory agencies and academia. However, some areas which affect the fuel consumption have received relatively small interest. One of these areas is the total energy used for vehicle interior climate which can have a large effect on real-world fuel consumption. Although there are several methods described in the literature for analyzing fuel consumption for parts of the climate control system, especially the Air-Condition (AC) system, the total fuel consumption including the vehicle interior climate has often been ignored, both in complete vehicle testing and simulation. The purpose of this research was to develop a model that predicts the total energy use for the vehicle interior climate. To predict the total energy use the model included sub models of the passenger compartment, the air-handling unit, the AC, the engine cooling system and the engine.
Journal Article

CFD Simulations of one Period of a Louvered Fin where the Airflow is Inclined Relative to the Heat Exchanger

2015-04-14
2015-01-1656
This article presents Computational Fluid Dynamics (CFD) simulations fo one period of a louvered fin, for a crossflow compact finned heat exchanger, where the incoming airflow was inclined relative to its core. Four inclinations were investigated: 90°, which was when the air flowed perpendicular to the heat exchanger, 60°, 30° and 10° angles relative to the vertical plane. The study included three heat exchanger designs, where two of them had symmetrical louvered fins and a thickness of 19mm and 52mm. The third had a thickness of 19mm and had the louvers angled in one direction. All heat exchangers have been simulated when the airflow entered both from above and below relative to the horizontal plane. Simulations have also been carried out when the airflow entered from the side, illustrating the heat exchanger to be angled relative to the vertical axis. Two air speeds have been investigated for each configuration, where the results were compared to experimental data.
Technical Paper

A 1D Method for Transient Simulations of Cooling Systems with Non-Uniform Temperature and Flow Boundaries Extracted from a 3D CFD Solution

2015-04-14
2015-01-0337
The current work investigates a method in 1D modeling of cooling systems including discretized cooling package with non-uniform boundary conditions. In a stacked cooling package the heat transfer through each heat exchanger depends on the mass flows and temperature fields. These are a result of complex three-dimensional phenomena, which take place in the under-hood and are highly non-uniform. A typical approach in 1D simulations is to assume these to be uniform, which reduces the authenticity of the simulation and calls for additional calibrations, normally done with input from test measurements. The presented work employs 3D CFD simulations of complete vehicle in STAR-CCM+ to perform a comprehensive study of mass-flow and thermal distribution over the inlet of the cooling package of a Volvo FM commercial vehicle in several steady-state operating points.
Journal Article

Experimental Investigation of Heat Transfer Rate and Pressure Drop through Angled Compact Heat Exchangers Relative to the Incoming Airflow

2014-09-30
2014-01-2337
This paper presents pressure drops and heat transfer rates for compact heat exchangers, where the heat exchangers are angled 90°, 60°, 30° and 10° relative to the incoming airflow. The investigation is based on three heat exchangers with thicknesses of 19mm and 52mm. Each heat exchanger was mounted in a duct, where it was tested for thermal and isothermal conditions. The inlet temperature of the coolant was defined to two temperatures; ambient temperature and 90°C. For the ambient cases the coolant had the same temperature as the surrounding air, these tests were performed for five airflow rates. When the coolant had a temperature of 90°C a combination of five coolant flow rates and five airflow rates were tested. The test set-up was defined as having a constant cross-section area for 90°, 60° and 30° angles, resulting in a larger core area and a lower airspeed through the core, for a more inclined heat exchanger.
Technical Paper

Modeling of Closed Fans using CFD and Steady State Assumption of Fluid Flow

2014-09-30
2014-01-2344
Computational Fluid Dynamics (CFD) is today an important tool in the design process of fuel and energy efficient vehicles. Under-hood management is one of the fields where CFD has proven itself to be useful for cost-efficient development of products. Multiple Reference Frame (MRF) method is the most common used tool in the industry for modeling rotating parts. In previous papers, the modeling strategy with MRF has been documented for open fans and showed high capability to predict fan performance. One of the open points of this proposed method has been its applicability to closed fans (ring fans), as industry experience and discussions has indicated previous conclusions of open fans and MRF modeling may not apply across ranges of fan designs. This paper investigates the MRF method for a closed fan with U-shroud and analyzes several aspect of the modeling strategy.
Technical Paper

Dual Stage Front Underride Protection Devices (dsFUPDs): Collision Interface and Passenger Compartment Intrusion

2014-04-01
2014-01-0567
A performance investigation of Front Underride Protection Devices (FUPDs) with varying collision interface is presented by monitoring occupant compartment intrusion of Toyota Yaris and Ford Taurus FEA models in LS-DYNA. A newly proposed simplified dual-spring system is developed and validated for this investigation, offering improvements over previously employed fixed-rigid simplified test rigs. The results of three tested collision interface profiles were used to guide the development of two new underride protection devices. In addition, these devices were set to comply with Volvo VNL packaging limitations. Topology optimization is used to aid engineering intuition in establishing appropriate load support paths, while multi-objective optimization subject to simultaneous quasi-static loading ensures minimal mass and deformation of the FUPDs.
Technical Paper

Impact of Paint Color on Rest Period Climate Control Loads in Long-Haul Trucks

2014-04-01
2014-01-0680
Cab climate conditioning is one of the primary reasons for operating the main engine in a long-haul truck during driver rest periods. In the United States, sleeper cab trucks use approximately 667 million gallons of fuel annually for rest period idling. The U.S. Department of Energy's National Renewable Energy Laboratory's (NREL) CoolCab Project works closely with industry to design efficient thermal management systems for long-haul trucks that minimize engine idling and fuel use while maintaining occupant comfort. Heat transfer to the vehicle interior from opaque exterior surfaces is one of the major heat pathways that contribute to air conditioning loads during long-haul truck daytime rest period idling. To quantify the impact of paint color and the opportunity for advanced paints, NREL collaborated with Volvo Group North America, PPG Industries, and Dometic Environmental Corporation.
Technical Paper

Comparison of Working Fluids in Both Subcritical and Supercritical Rankine Cycles for Waste-Heat Recovery Systems in Heavy-Duty Vehicles

2012-04-16
2012-01-1200
In a modern internal combustion engine, most of the fuel energy is dissipated as heat, mainly in the form of hot exhaust gas. A high temperature is required to allow conversion of the engine-out emissions in the catalytic system, but the temperature is usually still high downstream of the exhaust gas aftertreatment system. One way to recover some of this residual heat is to implement a Rankine cycle, which is connected to the exhaust system via a heat exchanger. The relatively low weight increase due to the additional components does not cause a significant fuel penalty, particularly for heavy-duty vehicles. The efficiency of a waste-heat recovery system such as a Rankine cycle depends on the efficiencies of the individual components and the choice of a suitable working fluid for the given boundary conditions.
X