Refine Your Search

Topic

Author

Search Results

Technical Paper

Effects of Pre-Chamber Internal Shape on CH4-H2 Combustion Characteristics Using Rapid-Compression Expansion Machine Experiments and 3D-CFD Analysis

2023-08-28
2023-24-0043
Pre-chamber (PC) natural gas and hydrogen (CH4-H2) combustion can improve thermal efficiency and greenhouse gas emissions from decarbonized stationary engines. However, the engine efficiency is worsened by prolonged combustion duration due to PC jet velocity extinction. This work investigates the impact of cylindrical PC internal shapes to increase its jet velocity and shorten combustion duration. A rapid compression and expansion machine (RCEM) is used to investigate the combustion characteristics of premixed CH4 gas. The combustion images are recorded using a high-speed camera of 10,000 fps. The experiments are conducted using two types of long PC shapes with diameters φ=4 mm (hereafter, longφ4) and 5 mm (hereafter, long φ5), and their combustions are compared against a short PC shape (φ=12 mm). For all designs of the PC shapes, the PC holes are 6 with 2 mm in diameter.
Technical Paper

Experimental and 3D-CFD Analysis of Synthetic Fuel Properties on Combustion and Exhaust Gas Emission Characteristics in Heavy-Duty Diesel Engines

2023-08-28
2023-24-0052
Synthetic fuels can significantly improve the combustion and emission characteristics of heavy-duty diesel engines toward decarbonizing heavy-duty propulsion systems. This work analyzes the effects of engine operating conditions and synthetic fuel properties on spray, combustion, and emissions (soot, NOx) using a supercharging single-cylinder engine experiment and KIVA-4 code combined with CHEMKIN-II and in-house phenomenological soot model. The blended fuel ratio is fixed at 80% diesel and 20% n-paraffin by volume (hereafter DP). Diesel, DP1 (diesel with n-pentane C5H12), DP2 (diesel with n-hexane C6H14), and DP3 (diesel with n-heptane C7H16) are used in engine-like-condition constant volume chamber (CVC) and engine experiments. Boosted engine experiments (1080 rpm, common-rail injection pressure 160 MPa, multi-pulse injection) are performed using the same DP fuel groups under various main injection timings, pulse-injection intervals, and EGR = 0-40%.
Technical Paper

Research on Reduction of Piston Vibration by Providing Granular Dampers Inside the Lattice Structure

2023-05-08
2023-01-1149
A high compression ratio is an effective means for improving the thermal efficiency of an internal combustion engines. However, a high compression ratio leads to a rapid rise in the combustion pressure, as it causes a high impulse force. The impulse force generates vibrations and noise by spreading in the engine. Therefore, reducing the vibration of the combustion (which increases as the compression ratio increases) can improve the thermal efficiency while using the same technology. We are conducting model-based research on technologies for reducing combustion vibration by applying a granular damper to a piston. To efficiently reduce the vibration, we suppress it directly with the piston, i.e., the source of the vibration. Thus, the damping effect is maximized within a minimized countermeasure range.
Technical Paper

Combustion Experiments of Focusing Engine with Asymmetric Double-Piston System Leading to Relatively-Silent High Compression Ratios

2023-04-11
2023-01-0401
In our previous reports, we proposed a new focusing engine with high thermal efficiency based on relatively-silent high compression and nearly-complete air-insulation effect, which employs pulsed multi-jets of gas collided around chamber center. Local compression level due to the gas jets colliding around chamber center before reaction can be varied from zero to 100MPa and 3000K, by changing the number of jets and intake pressure. Relatively-silent high compression is possible, because region around chamber wall is at pressure level of traditional engines. This is suitable for various usages of automobiles, aerocrafts, and rockets, and also for various fuels including hydrogen, because high compression around chamber center leads to stable auto-ignition and potential of low NOx at very lean burning operation. We developed two types of focusing compression engines, without and with piston. For the new engine without piston, we obtained nearly-complete air-insulation and high thrust.
Journal Article

Experimental and Computational Study of Auto-ignition in the New Prototype Engine with Focusing Compression due to Supermulti-Jets Colliding

2023-03-07
2023-01-0984
We have proposed a new compressive combustion principle leading to the auto-ignition of fuel by focusing compression due to the collision of the pulsed supermulti-jets. This principle has the potential of nearly-complete air insulation due to encasing burned gas around the center of the combustion chamber and a high compression ratio around the chamber center while suppressing vibration and noise levels. We have developed the first prototype engine having a very small combustion chamber of a diameter of 18 mm and also 14 side passages for the supermulti-jets colliding at the chamber center. Combustion experimental results indicating air insulation effect and high thrust over 100 N were obtained as basic data for various types of applications, including automobiles and aerospace usage such as for rockets. However, it was found that higher compression due to more jets is necessary to get stabler combustion.
Technical Paper

A Study on Optimizing SHEV Components Specifications and Control Parameter Values for the Reduction of Fuel Consumption by Using a Genetic Algorithm

2022-03-29
2022-01-0655
For a series hybrid electric vehicle (SHEV), the electric motor is responsible for driving the wheels, while the engine drives the only generator to provide electricity. SHEVs set a control strategy to make the engine run near the fixed operating point with high thermal efficiency, thereby effectively reducing fuel consumption. The powertrain system of HEV is more complex than that of a conventional drive system using only an internal combustion engine, and it is time-consuming to obtain the optimal components specification values and control parameters. Therefore, automatic optimization methods are required nowadays. We used Genetic Algorithm (GA) as the optimization method and optimize powertrain specifications and control parameter values to reduce fuel consumption. The results show that it is an effective optimization method.
Technical Paper

Effects of Partial Oxidation in an Unburned Mixture on a Flame Stretch under EGR Conditions

2021-09-21
2021-01-1165
The purpose of the present study is to find a way to extend a combustion stability limit for diluted combustion in a spark-ignition (SI) gasoline engine which has a high compression ratio. This paper focuses on partial oxidation in an unburned mixture which is observed in the high compression engine and clarifies the effect of partial oxidation in an unburned mixture on the behavior of a flame stretch and the extinction limit. The behavior of the flame stretch was simulated using the detailed chemical kinetics simulation with the opposed-flow flame reactor model. In the simulation, the reactants which have various reaction progress variables were examined to simulate the flame stretch and extinction under the partial oxidation conditions. The mixtures were also diluted by complete combustion products which represent exhaust gas recirculation (EGR).
Technical Paper

A Novel Integrated Series Hybrid Electric Vehicle Model Reveals Possibilities for Reducing Fuel Consumption and Improving Exhaust Gas Purification Performance

2021-09-21
2021-01-1244
This paper describes the development of an integrated simulation model for evaluating the effects of electrically heating the three-way catalyst (TWC) in a series hybrid electric vehicle (s-HEV) on fuel economy and exhaust gas purification performance. Engine and TWC models were developed in GT-Power to predict exhaust emissions during transient operation. These models were validated against data from vehicle tests using a chassis dynamometer and integrated into an s-HEV model built in MATLAB/Simulink. The s-HEV model accurately reproduced the performance characteristics of the vehicle’s engine, motor, generator, and battery during WLTC mode operation. It can thus be used to predict the fuel consumption, emissions, and performance of individual powertrain components. The engine combustion characteristics were reproduced with reasonable accuracy for the first 50 combustion cycles, representing the cold-start condition of the driving mode.
Technical Paper

Machine Learning Application to Predict Turbocharger Performance under Steady-State and Transient Conditions

2021-09-05
2021-24-0029
Performance predictions of advanced turbocharged engines are becoming difficult because conventional engine models are built using performance map data of turbochargers with a proportional integral derivative (PID) controller. Improving prediction capabilities under transient test cycles or real driving conditions is a challenging task. This study applies a machine learning technique to predict turbocharger performances with high accuracy under steady-state and transient conditions. The manipulated signals of engine speed and torque created based on Compressed High-Intensity Radiated Pulse (Chirp signal) and Amplitude-modulated Pseudo-Random Binary Signal (APRBS) are used as inputs to the engine testbed. Data from the engine experiments are used as training data for the AI-based turbocharger model. High prediction accuracy of the AI turbocharger model is achieved with the co-efficient of determination in the model, and cross-validation results are higher than 0.8.
Technical Paper

Numerical Methods on VVA and VCR Concepts for Fuel Economy Improvement of a Commercial CNG Truck

2020-09-15
2020-01-2083
Natural gas has been used in spark-ignition (SI) engines of natural gas vehicles (NGVs) due to its resource availability and stable price compared to gasoline. It has the potential to reduce carbon monoxide emissions from the SI engines due to its high hydrogen-to-carbon ratio. However, short running distance is an issue of the NGVs. In this work, methodologies to improve the fuel economy of a heavy-duty commercial truck under the Japanese Heavy-Duty Driving Cycle (JE05) is proposed by numerical 1D-CFD modeling. The main objective is a comparative analysis to find an optimal fuel economy under three variable mechanisms, variable valve timing (VVT), variable valve actuation (VVA), and variable compression ratio (VCR). Experimental data are taken from a six-cylinder turbocharged SI engine fueled by city gas 13A. The 9.83 L production engine is a CR11 type with a multi-point injection system operated under a stoichiometric mixture.
Technical Paper

Two Prototype Engines with Colliding and Compression of Pulsed Supermulti-Jets through a Focusing Process, Leading to Nearly Complete Air Insulation and Relatively Silent High Compression for Automobiles, Motorcycles, Aircrafts, and Rockets

2020-04-14
2020-01-0837
We have proposed the engine featuring a new compressive combustion principle based on pulsed supermulti-jets colliding through a focusing process in which the jets are injected from the chamber walls to the chamber center. This principle has the potential for achieving relatively silent high compression around the chamber center because autoignition occurs far from the chamber walls and also for stabilizing ignition due to this plug-less approach without heat loss on mechanical plugs including compulsory plasma ignition systems. Then, burned high temperature gas is encased by nearly complete air insulation, because the compressive flow shrinking in focusing process gets over expansion flow generated by combustion.
Technical Paper

Effects of Using an Electrically Heated Catalyst on the State of Charge of the Battery Pack for Series Hybrid Electric Vehicles at Cold Start

2020-04-14
2020-01-0444
Battery models are being developed as a component of the powertrain systems of hybrid electric vehicles (HEVs) to predict the state of charge (SOC) accurately. Electrically heated catalysts (EHCs) can be employed in the powertrains of HEVs to reach the catalyst light off temperature in advance. However, EHCs draw power from the battery pack and hence sufficient energy needs to be stored to power auxiliary components. In series HEVs, the engine is primarily used to charge the battery pack. Therefore, it is important to develop a control strategy that triggers engine start/stop conditions and reduces the frequency of engine operation to minimize the equivalent fuel consumption. In this study, a battery pack model was constructed in MATLAB-Simulink to investigate the SOC variation of a high-power lithium ion battery during extreme engine cold start conditions (-7°C) with/without application of an EHC.
Technical Paper

Numerical Studies on Temporal and Spatial Distribution of Equivalence Ratio in Diesel Combustion Using Large Eddy Simulation

2020-01-24
2019-32-0599
To identify ways of achieving good mixture formation and heat release in diesel spray combustion, we have performed Large Eddy Simulation (LES) using a detailed chemical reaction mechanism to study the temporal and spatial distribution of the local equivalence ratios and heat release rate. Here we characterize the effect of the fuel injection rate profile on these processes in the combustion chamber of a diesel engine. Two injection rate profiles are considered: a standard (STD) profile, which is a typical modern common rail injection profile, and the inverse delta (IVD) profile, which has the potential to suppress rich mixture formation in the spray tip region. Experimental data indicate that the formation of such mixtures may extend the duration of the late combustion period and thus reduce thermal efficiency.
Technical Paper

Attainment of High Thermal Efficiency and Near-zero Emissions by Optimizing Injected Spray Configuration in Direct Injection Hydrogen Engines

2019-12-19
2019-01-2306
The authors have previously proposed a plume ignition and combustion concept (i.e., PCC combustion), in which a hydrogen fuel is directly injected to the combustion chamber in the latter half of compression stroke and forms a richer mixture plume. By combusting the plume, both cooling losses and NOx formation are reduced. In this study, thermal efficiency was substantially improved and NOx formation was reduced with PCC combustion by optimizing such characteristics as direction and diameter of the jets in combination with combustion of lean mixture. Output power declined due to the lean mixture, however, was recovered by supercharging while keeping NOx emissions at the same level. Thermal efficiency was further improved by slightly re-optimizing the jet conditions.
Technical Paper

A Fundamental Study on Combustion Characteristics in a Pre-Chamber Type Lean Burn Natural Gas Engine

2019-09-09
2019-24-0123
Pre-chamber spark ignition technology can stabilize combustion and improve thermal efficiency of lean burn natural gas engines. During compression stroke, a homogeneous lean mixture is introduced into pre-chamber, which separates spark plug electrodes from turbulent flow field. After the pre-chamber mixture is ignited, the burnt jet gas is discharged through multi-hole nozzles which promotes combustion of the lean mixture in the main chamber due to turbulence caused by high speed jet and multi-points ignition. However, details mechanism in the process has not been elucidated. To design the pre-chamber geometry and to achieve stable combustion under the lean condition for such engines, it is important to understand the fundamental aspects of the combustion process. In this study, a high-speed video camera with a 306 nm band-pass filer and an image intensifier is used to visualize OH* self-luminosity in rapid compression-expansion machine experiment.
Technical Paper

Computational Optimization of Pressure Wave Reflection on the Piston Surface for Single Point Autoignition Gasoline Engine with Colliding Pulsed Supermulti-Jets Leading to Noiseless-High Compression and Nearly-Complete Air-Insulation

2019-04-02
2019-01-0235
A new engine concept based on pulsed supermulti-jets colliding at a small area around the chamber center was proposed in our previous research. It was expected to provide noiseless high compression ratio and nearly-complete air-insulation on chamber walls, leading to high thermal efficiency. In the previous reports, three-dimensional computations for the unsteady compressible Navier-Stokes equation were conducted, which were qualitative because of using regular grid method. This time, we develop a new numerical code in order to quantitatively simulate the compression level caused by the jets colliding with pulse. It is achieved by applying a staggered grid method to improve conservatibity of physical quantities at very high compression in combustion phenomena. Computations at a simple condition were fairly agreed with a theoretical value. Computational results obtained for a complex geometry of an engine by the new code had less error than one with previous codes.
Technical Paper

Experimental Study of Spark-Assisted Auto-Ignition Gasoline Engine with Octagonal Colliding Pulsed Supermulti-Jets and Asymmetric Double Piston Unit

2018-10-30
2018-32-0004
Much effort has been devoted to studies on auto-ignition engines of gasoline including homogeneous-charge combustion ignition engines over 30 years, which will lead to lower exhaust energy loss due to high-compression ratio and less dissipation loss due to throttle-less device. However, the big problem underlying gasoline auto-ignition is knocking phenomenon leading to strong noise and vibration. In order to overcome this problem, we propose the principle of colliding pulsed supermulti-jets. In a prototype engine developed by us, octagonal pulsed supermulti-jets collide and compress the air around the center point of combustion chamber, which leads to a hot spot area far from chamber walls. After generating the hot spot area, the mechanical compression of an asymmetric double piston unit is added in four-stroke operation, which brings auto-ignition of gasoline.
Technical Paper

Experimental Measurements and Computations for Clarifying Nearly Complete Air-Insulation Obtained by the Concept of Colliding Pulsed Supermulti-Jets

2017-03-28
2017-01-1030
In our previous papers, a new concept of a compressive combustion engine (Fugine) was proposed based on the collision of pulsed supermulti-jets, which can enclose the burned gas around the chamber center leading to an air-insulation effect and also a lower exhaust gas temperature due to high single-point compression. In order to examine the compression level and air-insulation effect as basic data for application to automobiles, aircraft, and rockets, a prototype engine based on the concept, i.e., a piston-less prototype engine with collision of bi-octagonal pulsed multi-jets from fourteen nozzles, was developed. Some combustion results [Naitoh et al. SAE paper, 2016] were recently reported. However, there was only one measurement of wall temperature and pressure in the previous report. Thus, in this paper, more experimental data for pressures and temperatures on chamber walls and exhaust temperatures, are presented for the prototype engine.
Technical Paper

Unsteady Three-Dimensional Computations of the Penetration Length and Mixing Process of Various Single High-Speed Gas Jets for Engines

2017-03-28
2017-01-0817
For various densities of gas jets including very light hydrogen and relatively heavy ones, the penetration length and diffusion process of a single high-speed gas fuel jet injected into air are computed by performing a large eddy simulation (LES) with fewer arbitrary constants applied for the unsteady three-dimensional compressible Navier-Stokes equation. In contrast, traditional ensemble models such as the Reynolds-averaged Navier-Stokes (RANS) equation have several arbitrary constants for fitting purposes. The cubic-interpolated pseudo-particle (CIP) method is employed for discretizing the nonlinear terms. Computations of single-component nitrogen and hydrogen jets were done under initial conditions of a fuel tank pressure of gas fuel = 10 MPa and back pressure of air = 3.5 MPa, i.e., the pressure level inside the combustion chamber after piston compression in the engine.
Technical Paper

Fundamental Combustion Experiments of a Piston-Less Single-Point Autoignition Gasoline Engine Based on Compression Due to Colliding of Pulsed Supermulti-Jets

2016-10-17
2016-01-2337
Computational and theoretical analyses for a new type of engine (Fugine), which was proposed by us based on the colliding of pulsed supermulti-jets, indicate a potential for very high thermal efficiencies and also less combustion noise. Three types of prototype engines were developed. One of them has a low-cost gasoline injector installed in the suction port and a double piston system in which eight octagonal supermulti-jets are injected and collide. Combustion experiments conducted on the prototype gasoline engine show high thermal efficiency comparable to that of diesel engines and less combustion noise comparable to that of traditional spark-ignition gasoline engines. This paper presents some combustion experiments of one of the other piston-less prototype engines having bi-octagonal pulsed multi-jets injected from fourteen nozzles.
X