Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

Experimental and 3D-CFD Analysis of Synthetic Fuel Properties on Combustion and Exhaust Gas Emission Characteristics in Heavy-Duty Diesel Engines

2023-08-28
2023-24-0052
Synthetic fuels can significantly improve the combustion and emission characteristics of heavy-duty diesel engines toward decarbonizing heavy-duty propulsion systems. This work analyzes the effects of engine operating conditions and synthetic fuel properties on spray, combustion, and emissions (soot, NOx) using a supercharging single-cylinder engine experiment and KIVA-4 code combined with CHEMKIN-II and in-house phenomenological soot model. The blended fuel ratio is fixed at 80% diesel and 20% n-paraffin by volume (hereafter DP). Diesel, DP1 (diesel with n-pentane C5H12), DP2 (diesel with n-hexane C6H14), and DP3 (diesel with n-heptane C7H16) are used in engine-like-condition constant volume chamber (CVC) and engine experiments. Boosted engine experiments (1080 rpm, common-rail injection pressure 160 MPa, multi-pulse injection) are performed using the same DP fuel groups under various main injection timings, pulse-injection intervals, and EGR = 0-40%.
Technical Paper

Combustion Experiments of Focusing Engine with Asymmetric Double-Piston System Leading to Relatively-Silent High Compression Ratios

2023-04-11
2023-01-0401
In our previous reports, we proposed a new focusing engine with high thermal efficiency based on relatively-silent high compression and nearly-complete air-insulation effect, which employs pulsed multi-jets of gas collided around chamber center. Local compression level due to the gas jets colliding around chamber center before reaction can be varied from zero to 100MPa and 3000K, by changing the number of jets and intake pressure. Relatively-silent high compression is possible, because region around chamber wall is at pressure level of traditional engines. This is suitable for various usages of automobiles, aerocrafts, and rockets, and also for various fuels including hydrogen, because high compression around chamber center leads to stable auto-ignition and potential of low NOx at very lean burning operation. We developed two types of focusing compression engines, without and with piston. For the new engine without piston, we obtained nearly-complete air-insulation and high thrust.
Technical Paper

Reaction Analysis and Modeling of Fast SCR in a Cu-Chabazite SCR Catalyst Considering Generation and Decomposition of Ammonium Nitrate

2021-09-05
2021-24-0073
In this study, reaction path analysis and modeling of NOx reduction phenomena by fast SCR reaction on a Cu-chabazite catalyst were conducted, considering the formation and decomposition of ammonium nitrate (NH4NO3). White crystals of NH4NO3 decompose at temperatures < 200 °C. Thus, the reaction behavior changes at 200 °C under fast SCR reaction conditions. NH4NO3 formation can occur on both Cu sites and Brønsted acid sites, which are active sites for NOx reduction in the Cu-chabazite catalyst, but it is unclear where NH4NO3 accumulates on the catalyst. Analyses using catalyst test pieces with different active sites were performed to estimate this accumulation. The results suggested that NH4NO3 accumulation does not depend on the presence of either Cu sites or Brønsted acid sites. Therefore, it is assumed that NH4NO3 can be accumulated everywhere on the catalyst, including on the zeolite framework. This phenomenon was included in the model as formation/accumulation sites S'.
Technical Paper

Conversion Performance Prediction of Thermal-Deteriorated Three-Way Catalysts: Surface Reaction Model Development Considering Platinum Group Metals and Co-Catalyst

2021-09-05
2021-24-0077
Three-way catalyst (TWC) converters can purify harmful substances, such as carbon monoxide, nitrogen oxides, and hydrocarbons, from the exhaust gases of gasoline engines. However, large amounts of these substances may be emitted before the TWC reaches its light-off temperature during cold starts, and its performance may be impaired by thermal deterioration during high-load driving. In this work, a simulation model was developed using axisuite commercial software by Exothermia S.A to predict the light-off conversion performance of Pd/CeO2-ZrO2-Al2O3 catalysts with different degrees of thermal deterioration. The model considered detailed surface reactions and the main factor of the deterioration mechanism. In the detailed reaction mechanism, adsorption, desorption, and surface reactions of each gas species at active sites of the platinum group metal (PGM) particles were considered based on the Langmuir-Hinshelwood mechanism.
Technical Paper

Reaction Path Analysis and Modeling of NOx Reduction in a Cu-chabazite SCR Catalyst Considering Cu Redox Chemistry and Reversible Hydrolysis of Cu Sites

2020-09-15
2020-01-2181
In this study, reaction path analysis and modeling of NOx reduction phenomena by selective catalytic reduction (SCR) with NH3 over a Cu-chabazite catalyst were conducted considering changes in the valence state of Cu sites and local structure due to differences in ligands to the Cu sites. The analysis showed that in the Cu-chabazite catalyst, NOx was mainly reduced by adsorbed NH3 on divalent Cu sites accompanied by a change in valence state of Cu from divalent to monovalent. It is known that the activation energy of NOx reduction on a Cu-chabazite catalyst changes between low temperatures ≤ 200 °C and mid to high temperatures ≥ 300 °C. To express this phenomenon, a reversible hydrolysis reaction based on the difference in coordination state of hydroxyl groups (OH−) to Cu sites at low and high temperatures was introduced into the model.
Technical Paper

Attainment of High Thermal Efficiency and Near-zero Emissions by Optimizing Injected Spray Configuration in Direct Injection Hydrogen Engines

2019-12-19
2019-01-2306
The authors have previously proposed a plume ignition and combustion concept (i.e., PCC combustion), in which a hydrogen fuel is directly injected to the combustion chamber in the latter half of compression stroke and forms a richer mixture plume. By combusting the plume, both cooling losses and NOx formation are reduced. In this study, thermal efficiency was substantially improved and NOx formation was reduced with PCC combustion by optimizing such characteristics as direction and diameter of the jets in combination with combustion of lean mixture. Output power declined due to the lean mixture, however, was recovered by supercharging while keeping NOx emissions at the same level. Thermal efficiency was further improved by slightly re-optimizing the jet conditions.
Technical Paper

Effects of Soot Deposition on NOx Purification Reaction and Mass Transfer in a SCR/DPF Catalyst

2018-09-10
2018-01-1707
Experimental studies were carried out to investigate the effect of soot deposition on NOx purification phenomena in an ammonia selective catalytic reduction coated diesel particulate filter (SCR/DPF) catalyst. To study soot deposition effects on the chemical reactions and mass transfer, two types of testing device were used. A synthetic gas bench enabling tests to be conducted with temperature and flow rate ranges relevant to real driving conditions was used to investigate the soot influence on reduction of NOx to N2 (DeNOx). A micro-reactor that removed the effect of soot deposition on mass transfer in the catalyst layer was used to analyze chemical reactions on a soot surface and their interaction with the SCR catalyst. A filter test brick of a Cu-zeolite SCR/DPF catalyst and a powder catalyst were used for the synthetic gas bench and micro-reactor tests, respectively. Engine soot was sampled in all the tests.
Journal Article

Detailed Diesel Combustion and Soot Formation Analysis with Improved Wall Model Using Large Eddy Simulation

2015-11-17
2015-32-0715
A mixed time-scale subgrid large eddy simulation was used to simulate mixture formation, combustion and soot formation under the influence of turbulence during diesel engine combustion. To account for the effects of engine wall heat transfer on combustion, the KIVA code's standard wall model was replaced to accommodate more realistic boundary conditions. This were carried out by implementing the non-isothermal wall model of Angelberger et al. with modifications and incorporating the log law from Pope's method to account for the wall surface roughness. Soot and NOx emissions predicted with the new model are compared to experimental data acquired under various EGR conditions.
Technical Paper

Developments of the Reduced Chemical Reaction Scheme for Multi-Component Gasoline Fuel

2015-09-01
2015-01-1808
The reduced chemical reaction scheme which can take the effect of major fuel components on auto ignition timing into account has been developed. This reaction scheme was based on the reduced reaction mechanism for the primary reference fuels (PRF) proposed by Tsurushima [1] with 33 species and 38 reactions. Some pre-exponential factors were modified by using Particle Swarm Optimization to match the ignition delay time versus reciprocal temperature which was calculated by the detailed scheme with 2,301 species and 11,116 elementary chemical reactions. The result using the present reaction scheme shows good agreements with that using the detailed scheme for the effects of EGR, fuel components, and radical species on the ignition timing under homogeneous charge compression ignition combustion (HCCI) conditions.
Technical Paper

A Study on the Improvement of NOx Reduction Efficiency for a Urea SCR System

2015-09-01
2015-01-2014
Urea SCR (Selective Catalytic Reduction) exhaust after-treatment systems are one of the most promising measures to reduce NOx emissions from diesel engines. Both Cu-zeolite (Cu-SCR) and Fe-zeolite (Fe-SCR) urea SCR systems have been studied extensively but not many detailed studies have been conducted on the combination of both systems. Thus, we carried out studies on such Combined-SCR systems and their capability to reduce NOx under various engine operating conditions. We also conducted transient engine tests using different catalyst systems to compare their performance. The results show that combined-SCR systems can reduce NOx more effectively than Fe-SCR or Cu-SCR alone. The best NOx reduction performance was achieved at a Cu ratio of 0.667 (i.e. Fe: Cu =1: 2). Combined-SCR thus apparently benefits from the characteristics of both Cu-SCR and Fe-SCR, allowing it to reduce NOx over a wide range of operating conditions.
Technical Paper

Improvement of NOx Reduction Rate of Urea-SCR System by NH3 Adsorption Quantity Control

2008-10-06
2008-01-2498
A urea SCR system was combined with a DPF system to reduce NOx and PM in a four liters turbocharged with intercooler diesel engine. Significant reduction in NOx was observed at low exhaust gas temperatures by increasing NH3 adsorption quantity in the SCR catalyst. Control logic of the NH3 adsorption quantity for transient operation was developed based on the NH3 adsorption characteristics on the SCR catalyst. It has been shown that NOx can be reduced by 75% at the average SCR inlet gas temperature of 158 deg.C by adopting the NH3 adsorption quantity control in the JE05 Mode.
Technical Paper

Improvement of Combustion and Exhaust Gas Emissions in a Passenger Car Diesel Engine by Modification of Combustion Chamber Design

2006-10-16
2006-01-3435
Three types of combustion chamber configurations (Types A, B, and C) with compression ratio lower than that of the baseline were tested for improved performance and exhaust gas emissions from an inline-four-cylinder 1.7-liter common-rail diesel engine manufactured for use with passenger cars. First, three combustion chambers were examined numerically using CFD code. Second, engine tests were conducted by using Type B combustion chamber, which is expected to have the best performance and exhaust gas emissions of all. As a result, 80% of NOx emissions at both low and medium loads at 1500 rpm, the engine speed used frequently in the actual city driving, improved with nearly no degradation in smoke emissions and brake thermal efficiency. It was shown that a large amount of cooled EGR enables NOx-free combustion with long ignition delay.
Technical Paper

Control Strategy for Urea-SCR System in Single Step Load Transition

2006-10-16
2006-01-3308
Urea-SCR system has a high NOx reduction potential in the steady-state diesel engine operation. In complicated transient operations, however, there are certain problems with the urea-SCR system in that NOx reduction performance degrades and adsorbed NH3 would be emitted. Here, optimum urea injection methods and exhaust bypass control to overcome these problems are studied. This exhaust bypass control enables NO/NOx ratio at the inlet of SCR catalyst to be decreased widely, which prevents over production of NO2 at the pre-oxidation catalyst. Steady-state and simple transient engine tests were conducted to clarify NOx reduction characteristics when optimum urea injection pattern and exhaust bypass control were applied. In simple transient test, only the engine load was rapidly changed for obtaining the fundamental knowledge concerning the effect of those techniques.
Technical Paper

Ignition and Combustion Control of Diesel HCCI

2005-05-11
2005-01-2132
Homogeneous Charge Compression Ignition (HCCI) is effective for the simultaneous reduction of soot and NOx emissions in diesel engine. In general, high octane number fuels (gasoline components or gaseous fuels) are used for HCCI operation, because these fuels briefly form lean homogeneous mixture because of long ignition delay and high volatility. However, it is necessary to improve injection systems, when these high octane number fuels are used in diesel engine. In addition, the difficulty of controlling auto-ignition timing must be resolved. On the other hand, HCCI using diesel fuel (diesel HCCI) also needs ignition control, because diesel fuel which has a low octane number causes the early ignition before TDC. The purpose of this study is the ignition and combustion control of diesel HCCI. The effects of parameters (injection timing, injection pressure, internal/external EGR, boost pressure, and variable valve timing (VVT)) on the ignition timing of diesel HCCI were investigated.
Technical Paper

Experimental and Numerical Studies on Particulate Matter Formed in Fuel Rich Mixture

2003-10-27
2003-01-3175
Experimental and numerical studies on PAHs (Polycyclic Aromatic Hydrocarbons) and PM (Particulate Matters) formed in the fuel rich mixture have been conducted. In the experiment, neat n-heptane and n-heptane with benzene 25 % by weight were chosen as test fuels. In-cylinder gases produced by the fuel-rich HCCI (Homogeneous Charge Compression Ignition) combustion were directly sampled and analyzed by the use of GC/MS (Gas Chromatograph/Mass Spectro- metry), and PM emission was also measured by PM sampling system to reveal characteristics of PM formation. Numerical study has been also carried out using a zero dimensional combustion model combined with detailed chemistry. Furthermore, simple surface growth of soot particles was integrated into a detailed chemical kinetic model, and validated with the experimental data.
Technical Paper

Numerical Study on Iso-Octane Homogeneous Charge Compression Ignition

2003-05-19
2003-01-1820
A numerical study was carried out to investigate auto-ignition characteristics during HCCI predicted by using zero and multi-dimensional models combined with detailed kinetics including 116 chemical species and 689 elementary reactions involving iso-octane. In the simulation, homogeneous charge compression ignition of the fuel was analyzed under the same conditions as encountered in internal combustion engines. The results elucidated the combustible region and oxidation process of iso-octane with the formation and destruction of various chemical species in the cylinder.
Technical Paper

A Numerical Study on Ignition and Combustion of a DI Diesel Engine by Using CFD Code Combined with Detailed Chemical Kinetics

2003-05-19
2003-01-1847
A CFD code combined with detailed chemical kinetics has been developed, linking with KIVA-3 and subroutines in CHEMKIN-II directly with some modifications. By using this CFD code, formation processes of combustion and exhaust gas emission for a turbo-charged DI diesel engine with common rail fuel injection system were simulated. As a result, formation processes of pollutant including NOx and soot were also considered according to the calculation results. The results show that NO caused by the extended Zeldvich mechanism accounted for about 88% of all NO, and it was found that there is a possibility to predict where and when soot will be formed by considering a simplified soot formation model.
Technical Paper

Experimental and Numerical Studies on Soot Formation in Fuel Rich Mixture

2003-05-19
2003-01-1850
Experimental and numerical studies are conducted on the formation of soot and Polycyclic Aromatic Hydrocarbons (PAHs), regarded as precursors of soot, during the combustion of fuel-rich homogeneous n-heptane mixtures. In-cylinder gases are sampled directly through a high-speed solenoid valve in engine tests, to be analyzed by GC/MS for qualifying PAHs. Smoke concentration is also measured. A numerical study is carried out by using a zero-dimensional model combined with detailed chemical kinetics. The experiments and computations show that PAHs can be predicted qualitatively by means of the present kinetic model.
X