Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Muscular Response to Physiologic Tensile Stretch of the Caprine C5/6 Facet Joint Capsule: Dynamic Recruitment Thresholds and Latencies

2011-11-07
2011-22-0016
This study examined the cervical muscle response to physiologic, high-rate (100 mm/s) tensile facet joint capsule (FJC) stretch. Six in-vivo caprine C5/6 FJC preparations were subjected to an incremental tensile loading paradigm. EMG activity was recorded from the right trapezius (TR) and multifidus (MF) muscle groups at the C5 and C6 levels; and from the sternomastoid (SM) and longus colli (LC) muscle groups bilaterally at the C5/6 level; during FJC stretch. Capsule load during the displacement applications was recorded via a miniature load cell, and 3D capsule strains (based on stereoimaging of an array of markers on the capsule surface) were reconstructed using finite element methods. EMG traces from each muscle were examined for onset of muscular activity. Capsule strains and loads at the time of EMG onset were recorded for each muscle, as was the time from the onset of FJC stretch to the onset of muscle activity. All muscles were responsive to physiologic high-rate FJC stretch.
Technical Paper

A New Model of Traumatic Axonal Injury to Determine the Effects of Strain and Displacement Rates

2006-11-06
2006-22-0023
Traumatic brain injury (TBI) continues to be a major health problem, with over 500,000 cases per year with a societal cost of approximately $85 billion in the US. Motor vehicle accidents are the leading cause of such injuries. In many cases of TBI widespread disruption of the axons occurs through a process known as diffuse axonal injury (DAI) or traumatic axonal injury (TAI). In the current study, an in vivo TAI model was developed using spinal nerve roots of adult rats. This model was used to determine functional and structural responses of axons to various strains and displacement rates. Fifty-six L5 dorsal nerve roots were each subjected to a predetermined strain range (<10%, 10-20% and >20%) at a specified displacement rate (0.01 mm/sec and 15 mm/sec) only once. Image analysis was used to determine actual strains on the roots during the pull.
X