Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Hydrogenated Vegetable Oil in Injection Systems: A Tribological Study

2020-06-09
2020-01-5060
The aim of this paper is the assessment of the possible impacts of eco-friendly fuels on injection systems by conducting tribological model tests. In this regard, lubricity (High-Frequency Reciprocating Rig, HFRR), scuffing load at different temperatures, and oxidation stability of different fuels B7, R33, pure HVO, and commercial-grade HVO diesel fuel have been deeply investigated. As a result of our study, the HFRR wear scar diameter (WSD) shows no distinct temperature dependence for both fossil-based diesel fuels (B7 and R33). In contrast, vegetable-based ones (pure HVO and commercially available HVO-based fuel) reveal lower lubricity with a trend to higher HFRR value when the temperature is increased. The commercial HVO fuel shows, compared to the pure HVO, better HFRR values at all tested temperatures. Nevertheless, all HFRR values still stay within the limits set by the relevant fuel standards EN 590 and ASTM D975.
Technical Paper

Fatigue Strength Evaluation for Internally Pressurized Components in Fuel Injection Systems Considering Steel Cleanness

2018-11-20
2018-01-5044
Steel-made components of modern fuel injection systems are designed for pressure amplitudes of ≥300 bar (gasoline engines) and 2200 bar (diesel engines), respectively. In order to evaluate the risk of field failure, for example, for a service life of 300 000 miles, Wöhler pulsation tests are conducted at very high-pressure levels far beyond the service pressure. In a standard procedure, the results of these high-cycle fatigue (HCF) tests with an ultimate number of cycles of 5∙106 are extrapolated down to real-life load amplitudes, assuming that there is a unique function for the dependency of failure probability PA on pressure amplitude Δp, regardless of the different failure mechanisms and crack initiation sites, like surface imperfections, internal defects, etc.
Technical Paper

48 V Hybrid System Technologies to Develop the Most Efficient and Cleanest Diesel

2018-05-30
2018-37-0011
The tighter exhaust emissions standards introduced by governments for light duty vehicles are challenging car manufactures to meet at the same time legal emission limits and fuel efficiency improvements, still providing excellent fun to drive characteristics. The Hybrid and Diesel propulsion systems are two important players on that competition. In this scenario, the 48 V hybridization has the potential to become a cost-effective solution compared to High Voltage systems, outlining a new way to approach the well-known trade-off between CO2 and NOx in Diesels. Aim of this study has been to investigate the benefits offered by a P0 48 V Hybrid system when coupled with a 1.6 L Diesel engine in a 7-seat multi-purpose vehicle.
Technical Paper

Electronic Horizon: A Map as a Sensor and Predictive Control

2017-08-25
2017-01-1945
During recent years, all major North American and European commercial vehicle OEMs have introduced predictive functionalities based on an electronic horizon for their on-highway fleets. This is a system concept that lets vehicles know what is happening on the road ahead and allows them to react to that information without driver involvement. When an electronic horizon is used in heavy-duty trucks, a significant reduction in fuel consumption is possible as a key application. This is achieved by optimizing the algorithms in the engine control unit, the transmission control device or other control units in the vehicle. There is a clear business case for the vehicle owners. In this paper we review the long development from early navigation technologies to an in-vehicle sensor, called an electronic horizon. We present an overview of different architectures from several perspectives as well as multiple use cases for commercial vehicles.
Technical Paper

Virtual NVH Prototyping of Fuel Components Design - Focus on High Pressure Pumps and SCR Injectors

2017-06-05
2017-01-1840
Virtual NVH Engineering is going to be reviewed in this paper for the development of FIE (fuel injection equipment) components. Some examples based on high pressure pumps and SCR air cooling injectors will illustrate the explanation. The use of a 3D FEM vibro-acoustic model is essential to support virtual NVH Engineering. Therefore, a review of techniques to study components is done first. Model correlation is also an important topic which will be discussed and which makes any NVH engineer confident in using a model instead of real HW. It is quite challenging to establish these models, as they must mimic the entire physical phenomenon of real structure borne hardware sound in the whole audible frequency range. Limitations of models are also identified and allow answering one true question: Should we stay considering only each component separately or as an assembly of parts of a larger system in the development process?
Journal Article

AUTOSAR Based Multicore Software Implementation for Powertrain Applications

2015-04-14
2015-01-0179
The combustion engine will be the dominant drive for motor vehicles despite all the advances in the electrification of the drive train, for many years. The greater are the challenges for the automotive industry, especially in fuel consumption (CO2) and the environmental impacts of other emissions. From the fuel supply to the engine, up to the exhaust after treatment, new or improved functions are needed, which are integrated into increasingly powerful control electronics. This modern electronic engine management and powertrain controller will remain key components in the vehicle. As most of the micro controllers for future applications will be MultiCores, this paper gives an overview on how PowerSAR® supports this kind of architectures. It shows the concepts applied in the basic software area as well as for the applicative software. Further it will show the impact on the development process as well as the integration support for software delivered by the OEM.
Technical Paper

Hybrid Electric Vehicle Architecture Selection for EcoCAR 3 Competition

2015-04-14
2015-01-1228
This paper presents the work performed by the Wayne State University (WSU) EcoCAR 3 student design competition team in its preparation for the hybrid electric vehicle architecture selection process. This process is recognized as one of the most pivotal steps in the EcoCAR 3 competition. With a key lesson learned from participation in EcoCAR 2 on “truly learning how to learn,” the team held additional training sessions on architecture selection tools and exercises with the goal of improving both fundamental and procedural skills. The work conducted represents a combination of the architecture feasibility study and final selection process in terms of content and procedure, respectively. At the end of this study the team was able to identify four potentially viable hybrid powertrain architectures, and thoroughly analyze the performance and packaging feasibility of various component options.
Technical Paper

Charging Technologies for CO2 Optimization by Millerization

2015-04-14
2015-01-1250
In the past few years the gasoline direct injection (GDI) downsizing approach was the dominating gasoline engine technology used to reduce CO2 emission and to guarantee excellent transient performance. Forecasts for the next several years indicate that the worldwide market share of GDI engines will grow further. By 2022 it is expected that the gasoline DI engine will be the most popular combustion engine for passenger car application. However in the future the gasoline engine will have to comply with more stringent emission and CO2 standards. The European legislation demands a fleet average CO2 emission of 95g/km latest by 2021. Therefore, CO2 emission improvement, without compromising driveability, is the major goal of powertrain development. The perspective of more stringent CO2 and emission legislation in highly loaded drive cycle necessitates major development efforts.
Technical Paper

Simultaneous In-Cylinder Surface Temperature Measurements with Thermocouple, Laser-induced Phosphorescence, and Dual Wavelength Infrared Diagnostic Techniques in an Optical Engine

2015-04-14
2015-01-1658
As engine efficiency targets continue to rise, additional improvements must consider reduction of heat transfer losses. The development of advanced heat transfer models and realistic boundary conditions for simulation based engine design both require accurate in-cylinder wall temperature measurements. A novel dual wavelength infrared diagnostic has been developed to measure in-cylinder surface temperatures with high temporal resolution. The diagnostic has the capability to measure low amplitude, high frequency temperature variations, such as those occurring during the gas exchange process. The dual wavelength ratio method has the benefit of correcting for background scattering reflections and the emission from the optical window itself. The assumption that background effects are relatively constant during an engine cycle is shown to be valid over a range of intake conditions during motoring.
Technical Paper

Fundamental Understanding of a Multi-Sensing Piezo Fuel Injector Signal and Its Applications in Diagnosis

2014-10-13
2014-01-2590
Electronic controls in internal combustion engines require an in-cylinder combustion sensor to produce a feedback signal to the ECU (Engine Control Unit). Recent research indicated that the ion current sensor has many advantages over the pressure transducer, related mainly to lower cost. Modified glow plugs in diesel engines, and fuel injectors in both gasoline and diesel engines can be utilized as ion current sensors without the addition any part or drilling holes in the cylinder head needed for the pressure transducer. Multi sensing fuel injector (MSFI) system is a new technique which instruments the fuel injector with an electric circuit to perform multiple sensing tasks including functioning as an ion sensor in addition to its primary task of delivering the fuel into the cylinder. It is necessary to fundamentally understand MSFI system.
Technical Paper

Oil Dilution Model for Combustion Engines - Detection of Fuel Accumulation and Evaporation

2014-09-30
2014-36-0170
To reduce atmospheric CO2 emissions as well as crude oil consumption, several countries have started to increase the ethanol content in gasoline. Brazil is unique in this respect, where pure ethanol fuel (E100) is offered on the market, however the use of pure ethanol as a fuel, significantly affects engine oil dilution. High oil dilution directly affects the injection system, during the fuel evaporation process. The evaporation behaviour is mainly characterized by the chemical composition of the fuel accumulated in the oil, as well as the engine warm-up behaviour. A high proportion of the accumulated hydrocarbons in the engine oil evaporates, as engine oil temperature increases. There can be dramatic effects on systems that are not designed to consider the evaporated hydrocarbons. Effects such as misfire or engine stall are well known phenomena of unconsidered fuel evaporation.
Journal Article

Self-Regulation Minimizes Crash Risk from Attentional Effects of Cognitive Load during Auditory-Vocal Tasks

2014-04-01
2014-01-0448
This study reanalyzes the data from a recent experimental report from the University of Utah investigating the effect on driving performance of auditory-vocal secondary tasks (such as cell phone and passenger conversations, speech-to-text, and a complex artificial cognitive task). The current objective is to estimate the relative risk of crashes associated with such auditory-vocal tasks. Contrary to the Utah study's assumption of an increase in crash risk from the attentional effects of cognitive load, a deeper analysis of the Utah data shows that driver self-regulation provides an effective countermeasure that offsets possible increases in crash risk. For example, drivers self-regulated their following distances to compensate for the slight increases in brake response time while performing auditory-vocal tasks. This new finding is supported by naturalistic driving data showing that cell phone conversation does not increase crash risk above that of normal baseline driving.
Journal Article

An Unbiased Estimate of the Relative Crash Risk of Cell Phone Conversation while Driving an Automobile

2014-04-01
2014-01-0446
A key aim of research into cell phone tasks is to obtain an unbiased estimate of their relative risk (RR) for crashes. This paper re-examines five RR estimates of cell phone conversation in automobiles. The Toronto and Australian studies estimated an RR near 4, but used subjective estimates of driving and crash times. The OnStar, 100-Car, and a recent naturalistic study used objective measures of driving and crash times and estimated an RR near 1, not 4 - a major discrepancy. Analysis of data from GPS trip studies shows that people were in the car only 20% of the time on any given prior day at the same clock time they were in the car on a later day. Hence, the Toronto estimate of driving time during control windows must be reduced from 10 to 2 min.
Journal Article

A New Technique to Determine the Burning Velocity in a Gasoline Direct Injection Engine

2014-04-01
2014-01-1176
Many approaches have been taken to determine the burning velocity in internal combustion engines. Experimentally, the burning velocity has been determined in optically accessible gasoline engines by tracking the propagation of the flame front from the spark plug to the end of the combustion chamber. These experiments are costly as they require special imaging techniques and major modifications in the engine structure. Another approach to determine the burning velocity is from 3D CFD simulation models. These models require basic information about the mechanisms of combustion which are not available for distillate fuels in addition to many assumptions that have to be made to determine the burning velocity. Such models take long periods of computational time for execution and have to be calibrated and validated through experimentation.
Journal Article

In-Cylinder Wall Temperature Influence on Unburned Hydrocarbon Emissions During Transitional Period in an Optical Engine Using a Laser-Induced Phosphorescence Technique

2014-04-01
2014-01-1373
Emissions of Unburned Hydrocarbons (UHC) from diesel engines are a particular concern during the starting process, when after-treatment devices are typically below optimal operating temperatures. Drivability in the subsequent warm-up phase is also impaired by large cyclic fluctuations in mean effective pressure (MEP). This paper discusses in-cylinder wall temperature influence on unburned hydrocarbon emissions and combustion stability during the starting and warm-up process in an optical engine. A laser-induced phosphorescence technique is used for quantitative measurements of in-cylinder wall temperatures just prior to start of injection (SOI), which are correlated to engine out UHC emission mole fractions and combustion phasing during starting sequences over a range of charge densities, at a fixed fueling rate. Squish zone cylinder wall temperature shows significant influence on engine out UHC emissions during the warm-up process.
Journal Article

On-Board Fuel Identification using Artificial Neural Networks

2014-04-01
2014-01-1345
On-board fuel identification is important to ensure engine safe operation, similar power output, fuel economy and emissions levels when different fuels are used. Real-time detection of physical and chemical properties of the fuel requires the development of identifying techniques based on a simple, non-intrusive sensor. The measured crankshaft speed signal is already available on series engine and can be utilized to estimate at least one of the essential combustion parameters such as peak pressure and its location, rate of cylinder pressure rise and start of combustion, which are an indicative of the ignition properties of the fuel. Using a dynamic model of the crankshaft numerous methods have been previously developed to identify the fuel type but all with limited applications in terms of number of cylinders and computational resources for real time control.
Journal Article

Role of Volatility in the Development of JP-8 Surrogates for Diesel Engine Application

2014-04-01
2014-01-1389
Surrogates for JP-8 have been developed in the high temperature gas phase environment of gas turbines. In diesel engines, the fuel is introduced in the liquid phase where volatility plays a major role in the formation of the combustible mixture and autoignition reactions that occur at relatively lower temperatures. In this paper, the role of volatility on the combustion of JP-8 and five different surrogate fuels was investigated in the constant volume combustion chamber of the Ignition Quality Tester (IQT). IQT is used to determine the derived cetane number (DCN) of diesel engine fuels according to ASTM D6890. The surrogate fuels were formulated such that their DCNs matched that of JP-8, but with different volatilities. Tests were conducted to investigate the effect of volatility on the autoignition and combustion characteristics of the surrogates using a detailed analysis of the rate of heat release immediately after the start of injection.
Journal Article

Experimental Validation and Combustion Modeling of a JP-8 Surrogate in a Single Cylinder Diesel Engine

2014-04-01
2014-01-1376
This paper presents the results of an experimental investigation on a single cylinder engine to validate a two-component JP-8 surrogate. The two-component surrogate was chosen based on a previous investigation where the key properties, such as DCN, volatility, density, and lower heating value, of the surrogate were matched with those of the target JP-8. The matching of the auto-ignition, combustion, and emission characteristics of the surrogate with JP-8 was investigated in an actual diesel engine environment. The engine tests for the validation of the surrogate were conducted at an engine speed of 1500 rpm, a load of 3 bar, and different injection timings. The results for the cylinder gas pressure, ignition delay period, rate of heat release, and the CO, HC, and NOx emissions showed a good match between the surrogate and the target JP-8. However, the engine-out particulate matter for the surrogate was lower than that for the JP-8 at all tested conditions.
Technical Paper

Investigation of Ignition Energy with Visualization on a Spark Ignited Engine powered by CNG

2014-04-01
2014-01-1331
The need for using alternative fuel sources continues to grow as industry looks towards enhancing energy security and lowering emissions levels. In order to capture the potential of these megatrends, this study focuses on the relationship between ignition energy, thermal efficiency, and combustion stability of a 0.5 L single cylinder engine powered by compressed natural gas (CNG) at steady state operation. The goal of the experiment was to increase ignition energy at fixed lambda values to look for gains in thermal efficiency. Secondly, a lambda sweep was performed with criteria of maintaining a 4% COVIMEP by increasing the ignition energy until an appropriate threshold for stable combustion was found. The engine performance was measured with a combustion analysis system (CAS), to understand the effects of thermal efficiency and combustion stability (COVIMEP). Emissions of the engine were measured with an FTIR.
Technical Paper

Combustion Ionization for Resonance Detection and Mitigation Using Pilot Injection in a Diesel Engine

2014-04-01
2014-01-1360
Advanced injection systems play a major role in reducing engine out emission in modern diesel engines. One interesting technology is the common rail injection system which is becoming more vital in controlling emission due to its flexibility in injection pressure, timing and number of injection events. Many studies have showed the advantages of using such injection parameters to meet the strict emission and improve engine performance. A glow plug/ ion current sensor was used to measure ionization produced during the combustion process. The ion current signal contains many valuable information including combustion phasing, duration and combustion resonance. In prior publications, it was demonstrated the capability of the ion current to control the combustion phasing and the ability to detect combustion resonance. Therefore, the experimental testing was conducted under controlled combustion phasing using the feedback from the ion current sensor.
X