Refine Your Search

Topic

Author

Search Results

Technical Paper

Interlaminar Properties Improvement of Nanocomposites Using Coiled Nanomaterials

2021-03-02
2021-01-0027
In this research helical Carbon Nanotubes (CNTs) with various weight percentages as an additional reinforcement were used. The objective was to investigate the effectiveness of helical geometries of the CNTs to form interlocking mechanisms with the resin and the traditional microfiber reinforcements to improve the overall performance of the composite structures and assemblies. In this study, ASTM D2344/2344M-16 is used to study the short beam strength of the laminated nanocomposites and evaluate the benefit of the mechanically interlocked helical CNTs reinforcement. Overall, three sets of composite laminates (i.e., with neat epoxy, and with two different wt% of Helical CNTs reinforced epoxy) were fabricated per ASTM standard D2344/2344M-16. Adequate test specimens were prepared and then they were tested per ASTM standard. The test results were analyzed and evaluated to determine the effects of helical CNTs on short beam strength of the laminated nanocomposites.
Journal Article

Effects of Helical Carbon Nanotubes on Mechanical Performance of Laminated Composites and Bonded Joints

2020-03-10
2020-01-0029
Most composite assemblies and structures generally fail due to weak interlaminar properties and poor performance of their bonded joints that are assembled together with an adhesive layer. Adhesive failure and cohesive failure are among the most commonly observed failure modes in composite bonded joint assemblies. These failure modes occur due to the lack of reinforcement within the adhesive layer in transverse direction. In addition, the laminated composites fail due to the same reason that is the lack of reinforcement through the thickness direction between the laminae. The overall performance of any composite structures and assemblies largely depends on the interlaminar properties and the performance of its bonded joints. Various techniques and processes were developed in recent years to improve mechanical performance of the composite structures and assemblies, one of which includes the use of nanoscale reinforcements in between the laminae and within the adhesive layer.
Technical Paper

Refill Friction Stir Spot Joining Rivet Replacement Technology

2016-09-27
2016-01-2130
The Refill Friction Spot Joining (RFSJ) is an emerging solid-state spot welding technology that thermo-mechanically creates a molecular-level bond between the work-pieces. RFSJ does not consume any filler or foreign materials so that no additional weight is introduced to the assembly. As the solid-to-liquid phase transition is not involved in RFSJ in general, there is no lack of fusion or material deterioration caused by liquefaction and solidification. Unlike the conventional friction stir spot welding, RFSJ produces a spot joint with a perfectly flush surface finish without a key or exit hole. Currently, the aerospace industry employs solid rivets for fastening the primary structures as they meet the baseline requirements and have well-established standards and specifications.
Journal Article

Comparative Usage of Two Similar Airframes

2015-09-01
2015-01-9006
In-service data from two Bombardier business jets, a Global 5000 and a Global Express XRS, have been compared. Flight data has been analyzed from both airframes with comparable number of ground-air-ground cycles. Individual flight phase have been examined and compared between the two airframes. Primary emphasis has been placed on airframe usage. The influence of primary mission on ground-air-ground cycles has been highlighted in the form of ground and flight loads, as well as dynamics of the flights. It is demonstrated that safe-life maintenance approach may have to be adjusted to account for the airframe usage.
Technical Paper

Performance Evaluation of Computational HIC Component Tester for Aerospace Application

2008-08-19
2008-01-2229
The necessity of avoiding the destructive and non-repeatable FSST (Full Scale Sled Test) makes it desirable to devise a cheaper and more repeatable method which can supplant this test procedure. This need developed the HCTD (HIC Component Testing Device) which is capable of providing conservative HIC results with higher repeatability. The computational model of the HCTD is validated against one of the tests conducted at CAMI with polyethylene foam. This validated model is used to conduct a series of tests with input parameters similar to the sled test to develop the correlation between the sled test and HCTD. This study hence concludes that a validated computational model of HCTD can be successfully utilized to address the HIC compliance issues for a foam padded surface.
Technical Paper

Determination of the Operational Environment of the Propeller Blades on Beech 1900D Aircraft

2008-08-19
2008-01-2226
Data obtained from digital flight data recorders are used to assess the actual operational environment of propellers on a fleet of Beech 1900D aircraft in commuter role. Information is given on various aerodynamic parameters as well as those pertaining to engine and propeller usage. The takeoff rotation has been identified as the most demanding phase of flight in terms of unsteady loads exerted on the propeller blades. Special attention is paid to ground operations.
Journal Article

The Fatigue Behavior of Fastener Joints

2008-08-19
2008-01-2259
The fatigue behavior of Hilok fastener joints under constant amplitude loading has been investigated experimentally. The effects of load transfer in an unbalanced joint configuration was characterized in terms of a stress severity factor relative to the open-hole configuration. The experimental data indicates that the clamp-up forces dominate the performance of fastener joints with the open-hole fatigue life being the lower bound at the stress levels investigated. The failure modes were observed to transition from a net-section type failure across the minimum section to a fretting induced failure at some distance from the hole. The experimental data has been used to develop stress severity factors to be used as a measure of the fatigue quality of the fastener joints.
Technical Paper

Experimental Investigation of a Bleed Air Ice Protection System

2007-09-24
2007-01-3313
The work presented in this paper is part of a long-term research program to explore methods for improving bleed air system performance. Another objective of this research is to provide detailed experimental data for the development and validation of simulation tools used in the design and analysis of bleed air systems. A business jet wing was equipped with an inner-liner hot air ice protection system and was extensively instrumented for documenting system thermal performance. The wing was tested at the NASA Glenn Icing Research Tunnel (IRT) for representative in-flight icing conditions. Data obtained include bleed air supply and exhaust flow properties, wing leading edge skin temperatures, temperatures and pressures in the interior passages of the bleed air system, flow properties inside the piccolo tube, photos of run back ice shapes and ice shape traces. Selected experimental results for a warm hold icing condition are presented in this paper.
Technical Paper

Parametric Experiment of Large Droplet Dynamics

2007-09-24
2007-01-3346
An experimental study was performed to investigate large droplet dynamics in the vicinity of an airfoil. The investigation was conducted using the NASA Glenn Droplet Imaging Flow Tunnel (DrIFT). Mono-dispersed large droplets were released at the tunnel inlet and accelerated toward an airfoil that was mounted in the test section. The dynamic behavior of a droplet's encounter with the airfoil, which may involve droplet distortion, break-up, impingement and splashing, was recorded using a high-speed imaging system. The effects of the droplet size, tunnel velocity and airfoil configuration on the droplet dynamics were investigated in a parametric study. The droplet sizes used in the experimental study were 96 and 375 μm whereas tunnel velocities were varied from 80 to 130 mph. Three different airfoil geometries were used in the experimental study; a ‘clean’ and ‘iced’ airfoil, and a ‘clean’ three-element high-lift airfoil. The incidence angle of these airfoils was set to zero degrees.
Technical Paper

Edge Trimming of CFRP with Diamond Interlocking Tools

2006-09-12
2006-01-3173
In the present work we studied the edge trimming process of CFRP with a diamond interlocking “burr” tool. Measurements of tool wear, surface roughness, spindle power and delamination depth were performed for different combinations of spindle speed and feed rate and were subsequently used to characterize machining quality. It was found that direct wear measurement for this type of cutting tool is not conclusive and thus not suitable for assessing tool life and machining quality. Instead, indirect indicators of tool wear were found more suitable for this purpose. Using these indirect methods an equation for tool life was defined and parameters for optimum machining quality were determined.
Technical Paper

Characterization of the Effect of Material Configuration and Impact Parameters on Damage Tolerance of Sandwich Composites

2006-08-30
2006-01-2443
A series of carefully selected tests were used to isolate the coupled influence of various combinations of the number of facesheet plies, impact energies, and impactor diameters on the damage formation and residual strength degradation of sandwich composites due to normal impact. The diameter of the planar damage area associated with Through Transmission Ultrasonic C-scan and the compression after impact measurements were used to describe the extent of the internal damage and residual strength degradation of test panels, respectively. Standard analysis of variance techniques were used to assess the significance of the regression models, individual terms, and the model lack-of-fit. In addition, the inherent variability associated with given types of experimental measurements was evaluated.
Technical Paper

An Experimental Investigation of SLD Impingement on Airfoils and Simulated Ice Shapes

2003-06-16
2003-01-2129
This paper presents experimental methods for investigating large droplet impingement dynamics and for obtaining small and large water droplet impingement data. Droplet impingement visualization experiments conducted in the Goodrich Icing Wind Tunnel with a 21-in chord NACA 0012 airfoil demonstrated considerable droplet splashing during impingement. The tests were performed for speeds in the range 50 to 175 mph and with cloud median volumetric diameters in the range of 11 to 270 microns. Extensive large droplet impingement tests were conducted at the NASA Glenn Icing Research Tunnel (IRT). Impingement data were obtained for a range of airfoil sections including three 36-inch chord airfoils (MS(1)-0317, GLC-305, and NACA 652-415), a 57-inch chord Twin Otter horizontal tail section and 22.5-minute and 45-minute LEWICE glaze ice shapes for the Twin Otter tail section. Small droplet impingement tests were also conducted for selected test models.
Technical Paper

Tail Icing Effects on the Aerodynamic Performance of a Business Jet Aircraft

2002-11-05
2002-01-3007
Experimental studies were conducted to investigate the effect of tailplane icing on the aerodynamic characteristics of 15%-scale business jet aircraft. The simulated ice shapes selected for the experimental investigation included 9-min and 22.5-min smooth and rough LEWICE ice shapes and spoiler ice shapes. The height of the spoilers was sized to match the horns of the LEWICE shapes on the suction side of the horizontal tail. Tests were also conducted to investigate aerodynamic performance degradation due to ice roughness which was simulated with sandpaper. Six component force and moment measurements, elevator hinge moments, surface pressures, and boundary layer velocity profiles were obtained for a range of test conditions. Test conditions included AOA sweeps for Reynolds number in the range of 0.7 based on tail mean aerodynamic chord and elevator deflections in the range of -15 to +15 degrees.
Technical Paper

Damage Resistance Characterization of Sandwich Composites Using Response Surfaces

2002-04-16
2002-01-1538
The coupled influence of material configuration (number of facesheet plies, core density, core thickness) and impact parameters (impact velocity and energy, impactor diameter) on the impact damage resistance characteristics of sandwich composites comprised of carbon-epoxy woven fabric facesheets and Nomex honeycomb cores was investigated using empirically based quadratic response surfaces. The diameter of the planar damage area associated with TTU C-scan measurements and the peak residual facesheet indentation depth were used to describe the extent of internal and detectable surface damage, respectively. Estimates of the size of the planar damage region correlated reasonably well with experimentally determined values. For a fixed set of impact parameters, estimates of the planar damage size and residual facesheet indentation suggest that impact damage development is highly material and lay-up configuration dependent.
Technical Paper

Damage Tolerance of Honeycomb Sandwich Composite Panels

2002-04-16
2002-01-1537
During this study, a number of 8.5-inch by 11.5-inch flat honeycomb sandwich panels were inflicted with low energy impact damage, inspected non-destructively, and tested for residual in-plane compressive strength. Each panel had either a 3/8-inch or 3/4-inch low density Nomex honeycomb core, and either 2-ply, 4-ply or 6-ply face sheets. The face sheets were either carbon or Eglass (prepreg) fabric. The panels were either clamped or simply supported in a test fixture during impact from a gravity assisted drop mechanism, and impacted with either a 1-inch or 3-inch diameter spherical indenter. After impact the damage to each panel was characterized by (1) ultrasonic through-transmission to obtain a c-scan representing planar damage area, (2) indentation volume and depth, and finally (3) visual inspection to rate the damage according to a predetermined rating scale. The panels were then tested for in-plane compressive strength.
Technical Paper

Summary of the Effect of Multiple Site Damage on the Linkup Strength of 2024-T3 Aluminum Panels

2002-04-16
2002-01-1534
An aging aircraft accumulates fatigue cracks commonly referred to as multiple site damage (MSD). A simplified engineering fracture mechanics model, generally referred to as the linkup model (or plastic zone touch model), has been used with some success to describe the MSD fracture phenomenon in 2024-T3 aluminum panels. A disadvantage of the linkup model is that it gives excessively inaccurate results for some configurations. A modified linkup model has been developed through empirical analysis of test data taken from unstiffened panels with MSD cracks at open holes. The modified linkup model was then validated with test data from stiffened panels including single-bay panels with the lead crack centered between stiffeners and two-bay panels with the lead crack centered beneath a severed stiffener. Further validation of the modified linkup model was done with test data from panels with bolted lap joints. Test results were obtained from 112 different panels.
Technical Paper

Experimental Study of Hole Quality in Drilling of Titanium Alloy (6AL-4V)

2002-04-16
2002-01-1517
This paper presents the experimental study of hole quality parameters in the drilling of titanium alloy (6Al-4V). Titanium alloy plates were drilled dry using three types of solid carbide drills i.e. 2-flute helical twist drill, straight flute and three-flute drill. The objective was to study the effects of process parameters like feed rate, speed and drill bit geometry on the hole quality features. Typical hole quality features in a drilling process are the hole quality measures such as surface roughness, hole diameter, hole roundness and burr height. The results indicate that proper selection of speed, feed rate, and drill geometry can optimize metal removal rate and hole quality.
Technical Paper

High Speed Drilling of Al-2024-T3 Alloy

2002-04-16
2002-01-1516
The competitive market has forced the industry to develop methodologies to reduce lead-time of the products without sacrificing quality. One of the major metal removal operations in the aerospace industries is drilling. Over 100,000 holes are made for a small single engine aircraft. Naturally, demand for faster production rate results in the demand for high-speed drilling. But the cost of hole-making operations becomes a significant portion of the total manufacturing cost. This paper discusses the high speed drilling of Al-2024-T3 alloy, the effect of feed and speed on hole quality features like oversize, roundness error, burr height and surface roughness.
Technical Paper

Advanced Technology in Future Metal Cutting for Airframe Manufacturing

2002-04-16
2002-01-1515
Metal cutting is a substantial constituent of airframe manufacturing. During the past several decades, it has evolved significantly. However, most of the changes and improvement were initiated by the machine tool industry and cutting tool industry, thus these new technologies is generally applicable to all industries. Among them, few are developed especially for the airframe manufacture. Therefore, the potential of high efficiency could not be fully explored. In order to deal with severe competition, the aerospace industry needs improvement with a focus on achieving low cost through high efficiency. The direction of research and development in parts machining must comply with lean manufacturing principles and must enhance competitiveness. This article is being forwarded to discuss the trend of new developments in the metal cutting of airframe parts. Primary driving forces of this movement, such as managers, scientists, and engineers, have provided significant influence to this trend.
Technical Paper

Edge Trimming of CFRP Composites with Diamond Coated Tools: Edge Wear and Surface Characteristics

2002-04-16
2002-01-1526
The work presented here illustrates the wear behavior of CVD diamond coated carbide tools during the machining of carbon fiber-reinforced composites. Cutting experiments were conducted on a CNC milling machine for edge trimming of a 9-mm thick multi-layered carbon fiber-reinforced epoxy laminate in a climb cutting configuration. The effects of feed speed and diamond film thickness on the wear behavior of the coated tools were determined. In addition, characteristics of the worn cutting edge were studied using optical and scanning electron microscopes. It was shown that diamond coated tools generally performed better than the uncoated tools under all conditions. Uniform wear by abrasion of the diamond film, without exposing the substrate, was obtained when cutting at low feed speeds with thicker coatings. At higher feed speeds the wear of the coated tools was characterized by abrasion through the diamond film and exposure and wear of the substrate.
X