Refine Your Search

Topic

Search Results

Technical Paper

Lightweight Design of Integrated Hub and Spoke for Formula Student Racing Car

2024-04-09
2024-01-2080
In the racing world, speed is everything, and the Formula Student cars are no different. As one of the key means to improve the speed of the car, lightweight plays an important role in the racing world. The weight reduction of unsprung metal parts can not only improve the driving speed, but also effectively optimize the dynamic of the car, so the lightweight design of unsprung parts has attracted much attention. In the traditional Formula Student racing car, the hub and spoke are two independent parts, they are fixed by four hub bolts or a central locking nut, the material of these fasteners is usually steel, so it brings a lot of weight burden. In order to achieve unsprung lightweight, a new type of wheel part design of Formula Student racing car is proposed in this paper. The hub and spoke are designed as integrated aluminum alloy parts, effectively eliminating the mass of hub bolts or central locking nuts.
Technical Paper

Research on the Harmonics-Based the Optimization Algorithm for the Active Synthesis of Automobile Sound

2023-05-08
2023-01-1045
The technology of active sound generation (ASG) for automobiles is one of the most effective methods to flexibly achieve the sound design that meets the expectations of different user groups, and the active sound synthesis algorithms are crucial for the implementation of ASG. In this paper, the Kaiser window function-based the harmonic synthesis algorithm of automobile sound is proposed to achieve the extraction of the order sounds of target automobile. And, the suitable fitting functions are utilized to construct the mathematical model between the engine speed information and the amplitude of the different order sound. Then, a random phase correction algorithm is proposed to ensure the coherence of the synthesized sounds. Finally, the analysis of simulation results verifies that the established method of the extraction and synthesis of order sound can meet the requirements of target sound quality.
Technical Paper

Path Planning and Tracking Control of Car-like Robot Based on Improved NSGA-III and Fuzzy Sliding Mode Control

2023-04-11
2023-01-0681
In recent years, research on car-like robots has received more attention due to the rapid development of artificial intelligence from diverse disciplines. As essential parts, path planning and lateral path tracking control are the basis for car-like robots to complete automation tasks. Based on the two-degree-of-freedom vehicle dynamic model, this study profoundly analyzes the car-like robots’ path planning and lateral path tracking control. Three objectives: path length, path smoothness, and path safety, are defined and used to construct a multi-objective path planning model. By introducing an adaptive factor, redefining the selection of reference points, and using the cubic spline interpolation for path determination, an improved NGSA-III is proposed, which is mostly adapted in solving the multi-objective path planning problem.
Technical Paper

A Semantic Segmentation Algorithm for Intelligent Sweeper Vehicle Garbage Recognition Based on Improved U-net

2023-04-11
2023-01-0745
Intelligent sweeper vehicle is gradually applied to human life, in which the accuracy of garbage identification and classification can improve cleaning efficiency and save labor cost. Although Deep Learning has made significant progress in computer vision and the application of semantic network segmentation can improve waste identification rate and classification accuracy. Due to the loss of some spatial information during the convolution process, coupled with the lack of specific datasets for garbage identification, the training of the network and the improvement of recognition and classification accuracy are affected. Based on the Unet algorithm, in this paper we adjust the number of input and output channels in the convolutional layer to improve the speed during the feature extraction part. In addition, manually generated datasets are used to greatly improve the robustness of the model.
Technical Paper

Research on the Dual-Motor Coupling Power System Strategy of Electric Sweeping Vehicle

2022-03-29
2022-01-0673
The sweeping vehicle has made a great contribution to the cleaning of urban roads. The traditional electric sweeping vehicle uses the main and auxiliary motors to drive the driving system and the operating system respectively. However, because the sweeper is in a low-speed working condition for a long time, and the drive motor must meet the demand for high power, there exist problems of low motor utilization and high cost. Aiming at this phenomenon, a dual-motor power coupling system based on planetary gears is proposed. First, analyze the driving mode of the dual-motor coupling power system according to the actual working scheme of the sweeper, and match the parameters of the motor based on this. Second, on the premise of meeting the power requirements, analyze and divide the working range of each drive mode based on the principle of minimum energy consumption, and then obtain the best drive mode switching control and speed and torque distribution strategy.
Technical Paper

Tooth Profile Modification Analysis of Fine-Pitch Planetary Gears for High-Speed Electric Drive Axles Based on KISSsoft

2021-12-31
2021-01-7016
According to the requirements of high transmission ratio and high load torque of high-speed electric drive axle planetary gear system, the design and analysis of fine-pitch planetary gear system with small modulus, small pressure angle and high full tooth height of are carried out. In order to improve the bearing capacity of gear and reduce gear meshing noise, the tooth profile modification parameters of gear system are optimized. In this paper, the tooth modification methods are analyzed and the gear train parameters are determined. The influence degree of different tooth modification methods on the transmission performance of the gear train is determined by orthogonal experiment method. The transmission error is reduced, the stress fluctuation is improved, and the gear meshing performance is greatly improved by adopting the appropriate modification scheme, which proves the effectiveness of the tooth modification scheme.
Technical Paper

Styling Parameter Optimization of the Type C Recreational Vehicle Air Drag

2021-09-30
2021-01-5094
Recreational vehicles have a lot of potential consumers in China, especially the type C recreational vehicle is popular among consumers due to its advantages, prompting an increase in the production and sales volumes. The type C vehicle usually has a higher air drag than the common commercial vehicles due to its unique appearance. It can be reduced by optimizing the structural parameters, thus the energy consumed by the vehicle can be decreased. The external flow field of a recreational vehicle is analyzed by establishing its computational fluid dynamic (CFD) model. The characteristic of the RV’s external flow field is identified based on the simulation result. The approximation models of the vehicle roof parameters and air drag and vehicle volume are established by the response surface method (RSM). The vehicle roof parameters are optimized by multi-objective particle swarm optimization (MO-PSO).
Technical Paper

Evaluation of Objective Drivability for Passenger Cars Based on Hierarchical Mixture Model: A Case Study of Downshift Condition

2021-04-06
2021-01-0716
In order to solve the problems of insufficient accuracy for theoretical models and data-driven models for objective drivability evaluation requiring a large amount of data, an objective drivability evaluation method based on a hierarchical mixture model is proposed. First, a novel method of constructing a drivability evaluation system is developed, which combined by work breakdown structure (WBS) and analytic hierarchy process (AHP). Then, downshift condition is taken as a case study, and the subdivision condition is identified based on the hybrid mixture model. What's more, the drivability evaluation indexes of downshift condition are analyzed to establish the evaluation system of drivability.
Journal Article

Detection & Tracking of Multi-Scenic Lane Based on Segnet-LSTM Semantic Split Network

2021-04-06
2021-01-0083
Lane detection is an important component in automatic pilot system and advanced driving assistance system (ADAS). The stability and precision of lane detection will directly determine precision of control and lane plan of vehicles. Traditional mechanical vision lane detection approaches in complicated environment have the deficiencies of low precision and feature semantic description disabilities. But the lane detection depending on deep learning, e.g. SCNN network, LaneNet network, ENet-SAD network have imbalance problems of splitting precision and storage usage. This paper proposes an approach of high-efficiency deep learning Segnet-LSTM semantic segmentation network. This network structure is composed with encoding network and corresponding decoding networks. First, convolution and maximum pooling. The proposal extracts texture details of five images and stores searching position of maximum pooling. Meanwhile, it will implement interpolate processing to the lost points.
Technical Paper

Optimization of Shifting Schedule of Vehicle Coasting Mode Based on Dynamic Mass Identification

2020-04-14
2020-01-1321
Correct shifting schedule of vehicle coasting mode play a vital role in improving vehicle comfort and economy. At present, the calibration of the transmission shifting schedule ignores the impact of vehicle’s dynamic mass. This paper proposes a method for optimizing the shifting schedule of the coasting modes with gear based on the dynamic mass identification of the vehicle. This method identifies the dynamic mass of the vehicle during driving and substitute them into the process of solving the shifting schedule parameters. Then we get the optimal shifting schedule. At first, establish the Extended Kalman Filter to Pre-process the experimental data, reducing errors caused by excessive data fluctuations. Then, establishing a weighted squares estimation model based on particle swarm optimization to identify the dynamic mass of the vehicle.
Technical Paper

Energy Consumption Optimization for the Electric Vehicle Air Conditioning Using the Condensate Water

2019-04-02
2019-01-0148
In summer, the relatively low temperature water condenses in the evaporator when the vehicle air-conditioning (AC) is running. At present, the vehicle AC condensate water without well utilization is directly wasted. The condenser’s thermal transfer performance has a great influence on the AC performance, and to increase the convective heat transfer coefficient (CHTC) is the key to its design. In this paper, a method of using atomized condensate water (CW) to enhance the condenser’s thermal transfer performance is proposed, which can make the most of the CW's cold energy. It achieves the reuse of CW and increases the condenser’s CHTC. First, the CW flow calculation model in the evaporator and the calculation model of the condenser enhanced thermal transfer using atomized CW are both set up. The influence of the evaporation degree of atomized CW particles in the air on the enhancement effect is comprehensively considered.
Technical Paper

Energy Consumption of Passenger Compartment Auxiliary Cooling System Based on Peltier Effect

2017-03-28
2017-01-0155
The closed cabin temperature is anticipated to be cooled down when it is a bit hot inside the driving car. The traditional air-condition lowers the cabin temperature by frequently switching the status of the compressor, which increases the engine’s parasitic power and shortens the compressor’s service-life. The semiconductor auxiliary cooling system with the properties of no moving parts, high control precision and quick response has the potential to assist the on-board air-condition in modulating the cabin temperature with relative small ranges. Little temperature differences between the cabin and the outside environment means that the system energy consumption to ensure the occupant comfort is relatively low and the inefficiency could be made up by the renewable energy source.
Journal Article

Investigation of Deposits in Urea-SCR System Based on Vehicle Road Test

2017-03-14
2017-01-9275
In vehicles with urea-SCR system, normal operation of the urea-SCR system and engine will be influenced if there are deposits appearing on exhaust pipe wall. In this paper, a commercial vehicle is employed to study the influence factors of deposits through the vehicle road test. The results show that, urea injection rate, temperature and flow field have impacts on the formation of deposits. When decreasing the urea injection rate of calibration status by 20%, the deposit yield would reduce by 32%. If the ambient temperature decreased from 36 °C to 26 °C, the deposit yield would increase by 95%. After optimizing the exhaust pipe downstream of the urea injector by removing the step surface, only a few flow marks of urea droplets are observed on the pipe wall, and no lumps of deposits existing.
Technical Paper

Pressure Control Method of Hydraulic Retarder Working Chamber

2016-09-27
2016-01-8119
In order to overcome hysteresis and dead zone problems caused by friction for the proportional solenoid valve, and improve rapidity and stability of the pneumatic system on hydraulic retarder, a closed-loop control strategy based on valve coil current was proposed. The high-frequency low-amplitude dither signal was introduced into the proportional solenoid valve. With the proper dither signal, the stick-slip motion of the valve core was transformed into a steady one, and its dynamic performance was improved. Consequently, response time of retarder was reduced during gear changing. The proportional valve coil current was measured as a feedback for a closed-loop control strategy. Combining with the closed-loop strategy, the PI control algorithm was adopted to make sure that valve current was in accordance with the target value. Pulse Width Modulation (PWM) signal was used for the driving of proportional solenoid valve.
Technical Paper

The Driving Behavior Data Acquisition and Identification Based on Vehicle Bus

2016-09-14
2016-01-1888
This research is based on the Controller Area Network (CAN) bus, and briefly analyzed its communication protocol with reference to the layered model of Open System Interconnect Reference Model (OSI). Subsequently, a data acquisition system was designed and developed including a Vehicle Communication Interface (VCI) and a laptop. After the overall architecture was built, the communication mechanism of the VCI was studied. Furthermore, the lap top app was built using the layered design followed by the implementation of a scheme for data collection and experimentation involving the test driving of a real car on road. Finally, the driving style was identified by means of fuzzy reasoning and solving ambiguity based on fuzzy theory; via training the acceleration sample and forecast using the excellent learning and generalization ability of Support Vector Machine (SVM) for high-dimensional, finite samples.
Journal Article

Prediction of Lithium-ion Battery's Remaining Useful Life Based on Relevance Vector Machine

2016-05-01
2015-01-9147
In the field of Electric Vehicle (EV), what the driver is most concerned with is that whether the value of the battery's capacity is less than the failure threshold because of the degradation. And the failure threshold means instability of the battery, which is of great danger for drives and passengers. So the capacity is an important indicator to monitor the state of health (SOH) of the battery. In laboratory environment, standard performance tests can be carried out to collect a number of related data, which are available for regression prediction in practical application, such as the on-board battery pack. Firstly, we make use of the NASA battery data set to form the observed data sequence for regression prediction. And a practical method is proposed to determine the minimum embedding dimension and get the recurrence formula, with which a capacity model is built.
Technical Paper

Effects Analysis and Modeling of Different Transmission Running Conditions for Transmission Efficiency

2016-04-05
2016-01-1096
Several factors including internal factors which are related to the structure and components of transmission and external factors which are related to the running condition influence transmission efficiency (TE) collectively. Selected one manual transmission as the research object, this paper mainly analyzes factors including gears and bearings power loss through theoretical calculation and the external factors, such as gears, temperature and torque. Firstly, with a methodology, the overall efficiency of the manual transmission is calculated based on factors. Then, this paper discusses efficiency through external factor. This transmission is experimented on transmission test bench. On the bench, the driving motor (DM) simulates the power input of engine and the load motor (LM) simulates the whole resistance of vehicle. The mechanical transmission is operating in different speeds, torques and work temperature, thus the corresponding data are obtained.
Technical Paper

The Topology Optimization Analysis on Rope-Wheel Glass Lifter

2016-04-05
2016-01-1384
Glass lifter is a key part of automobile door system. Guide rail is the carrier of glass lifter, and it bears various load cases when glass lifer works. Mass, stiffness and natural frequencies are the factors that influence the performance of glass lifter. In order to design a lighter and reasonable glass lifter, topology optimization methods are studied in this paper. In a rope-wheel glass lifter, design domain is determined by the mechanical structure and working conditions. Firstly, the single target continuum structure topology optimization mathematic models of guide rail are built in this paper, and analysis of multi-stiffness topology optimization are carried out accordingly in which volume fraction is set as 0.4, 0.5 and 0.6. These models are based on SIMP (Solid Isotropic Material with Penalization) theory.
Technical Paper

Flow Field Analysis and Structure Optimization of the Suction Nozzle for Road Sweeper

2016-04-05
2016-01-1356
As a key component of airstream system equipped in the road sweeper, the structure of the suction nozzle determines its internal flow field distribution, which affects the dust-sucking efficiency to a great degree. This research is aiming to determine a better suction nozzle structure. Starting with an analysis of the one used in a certain type of road sweeper, the initial model of the suction nozzle is established, and the internal flow field is simulated with typical computational fluid dynamics (CFD) software named FLUENT. Based on the simulation results, the dust-sucking capability of the initial structure is evaluated from the aspects of pressure and velocity distribution. Furthermore, in order to explore the influence of different structural parameters on the flow field distribution within the suction nozzle, models with different cavity heights and shoulder angles are established, and Univariate Method is utilized to analyze the contrast models.
X