Refine Your Search

Topic

Search Results

Technical Paper

Lightweight Design of Integrated Hub and Spoke for Formula Student Racing Car

2024-04-09
2024-01-2080
In the racing world, speed is everything, and the Formula Student cars are no different. As one of the key means to improve the speed of the car, lightweight plays an important role in the racing world. The weight reduction of unsprung metal parts can not only improve the driving speed, but also effectively optimize the dynamic of the car, so the lightweight design of unsprung parts has attracted much attention. In the traditional Formula Student racing car, the hub and spoke are two independent parts, they are fixed by four hub bolts or a central locking nut, the material of these fasteners is usually steel, so it brings a lot of weight burden. In order to achieve unsprung lightweight, a new type of wheel part design of Formula Student racing car is proposed in this paper. The hub and spoke are designed as integrated aluminum alloy parts, effectively eliminating the mass of hub bolts or central locking nuts.
Technical Paper

Research on Design of Electric Vehicle Sound Synthesis Based on Frequency Shift Algorithm

2024-04-09
2024-01-2335
The active sound generation systems (ASGS) for electric vehicles (EVs) play an important role in improving sound perception and transmission in the car, and can meet the needs of different user groups for driving and riding experiences. The active sound synthesis algorithm is the core part of ASGS. This paper uses an efficient variable-range fast linear interpolation method to design a frequency-shifted and pitch-modified sound synthesis algorithm. By obtaining the operating parameters of EVs, such as vehicle speed, motor speed, pedal opening, etc., the original sound signal is interpolated to varying degrees to change the frequency of the sound signal, and then the amplitude of the sound signal is determined according to different driving states. This simulates an effect similar to the sound of a traditional car engine. Then, a dynamic superposition strategy is proposed based on the Hann window function.
Technical Paper

Assisted Steering Control for Distributed Drive Electric Vehicles Based on Combination of Driving and Braking

2023-10-30
2023-01-7012
This paper presents a low-speed assisted steering control approach for distributed drive electric vehicles. When the vehicle is driven at low speed, the braking of the inner-rear wheel is combined with differential drive to reduce the turning radius. A hierarchical control structure has been designed to achieve comprehensive control. The upper-level controller tracks the expected yaw rate and vehicle side-slip angle through a Linear Quadratic Regulator (LQR) algorithm. The desired yaw rate and vehicle side-slip angle are obtained according to the reference vehicle model, which can be regulated by the driver through the accelerator pedal. The lower-level controller uses a quadratic programming algorithm to distribute the yaw moment and driving moment to each wheel, aiming to minimize tire load rate variance.
Technical Paper

Research on the Harmonics-Based the Optimization Algorithm for the Active Synthesis of Automobile Sound

2023-05-08
2023-01-1045
The technology of active sound generation (ASG) for automobiles is one of the most effective methods to flexibly achieve the sound design that meets the expectations of different user groups, and the active sound synthesis algorithms are crucial for the implementation of ASG. In this paper, the Kaiser window function-based the harmonic synthesis algorithm of automobile sound is proposed to achieve the extraction of the order sounds of target automobile. And, the suitable fitting functions are utilized to construct the mathematical model between the engine speed information and the amplitude of the different order sound. Then, a random phase correction algorithm is proposed to ensure the coherence of the synthesized sounds. Finally, the analysis of simulation results verifies that the established method of the extraction and synthesis of order sound can meet the requirements of target sound quality.
Technical Paper

Path Planning and Tracking Control of Car-like Robot Based on Improved NSGA-III and Fuzzy Sliding Mode Control

2023-04-11
2023-01-0681
In recent years, research on car-like robots has received more attention due to the rapid development of artificial intelligence from diverse disciplines. As essential parts, path planning and lateral path tracking control are the basis for car-like robots to complete automation tasks. Based on the two-degree-of-freedom vehicle dynamic model, this study profoundly analyzes the car-like robots’ path planning and lateral path tracking control. Three objectives: path length, path smoothness, and path safety, are defined and used to construct a multi-objective path planning model. By introducing an adaptive factor, redefining the selection of reference points, and using the cubic spline interpolation for path determination, an improved NGSA-III is proposed, which is mostly adapted in solving the multi-objective path planning problem.
Technical Paper

MPC Based Car-Following Control for Electric Vehicles Considering Comfort

2023-04-11
2023-01-0683
This paper proposed a model predictive control(MPC) based car-following control strategy for electric vehicles considering comfort, in order to improve the comfort of the car-following control system of electric vehicles. The MPC algorithm is improved in the following three aspects to improve the comfort: Firstly, a five-state longitudinal car-following model is adopted, so that the MPC algorithm can optimize the acceleration and acceleration change rate of the ego vehicle. Secondly, for the weight coefficients of the output vector and the input vector of the objective function, the fixed weight coefficients are changed into variable weight coefficients by the way of Nash equilibrium game, so that the control system can improve the weight of the parameters used to control the comfort under suitable driving conditions.
Technical Paper

A Semantic Segmentation Algorithm for Intelligent Sweeper Vehicle Garbage Recognition Based on Improved U-net

2023-04-11
2023-01-0745
Intelligent sweeper vehicle is gradually applied to human life, in which the accuracy of garbage identification and classification can improve cleaning efficiency and save labor cost. Although Deep Learning has made significant progress in computer vision and the application of semantic network segmentation can improve waste identification rate and classification accuracy. Due to the loss of some spatial information during the convolution process, coupled with the lack of specific datasets for garbage identification, the training of the network and the improvement of recognition and classification accuracy are affected. Based on the Unet algorithm, in this paper we adjust the number of input and output channels in the convolutional layer to improve the speed during the feature extraction part. In addition, manually generated datasets are used to greatly improve the robustness of the model.
Journal Article

Optimization of Electric Vehicle Wireless Power Transmission Efficiency Based on Ant Lion Optimizer

2022-03-29
2022-01-0789
Magnetically coupled resonance wireless power transmission technology (MCR-WPT), as a technological innovation in the electric vehicle industry, is of great significance to promote the development of the electric vehicle industry chain. The current wireless charging technology is affected by the design of the vehicle itself, the distance between the vehicle-mounted part of the wireless charging and the ground is not fixed. And the changeable parking attitude will cause the projection of the transmitting coil and the receiving coil to deviate. Therefore, reasonable matching of transmission frequency, matching impedance and other parameters is of great significance for optimizing power transmission efficiency. This paper establishes a mathematical model of transmission frequency, matching impedance, distance between two coils and wireless power transmission efficiency.
Technical Paper

Research on the Dual-Motor Coupling Power System Strategy of Electric Sweeping Vehicle

2022-03-29
2022-01-0673
The sweeping vehicle has made a great contribution to the cleaning of urban roads. The traditional electric sweeping vehicle uses the main and auxiliary motors to drive the driving system and the operating system respectively. However, because the sweeper is in a low-speed working condition for a long time, and the drive motor must meet the demand for high power, there exist problems of low motor utilization and high cost. Aiming at this phenomenon, a dual-motor power coupling system based on planetary gears is proposed. First, analyze the driving mode of the dual-motor coupling power system according to the actual working scheme of the sweeper, and match the parameters of the motor based on this. Second, on the premise of meeting the power requirements, analyze and divide the working range of each drive mode based on the principle of minimum energy consumption, and then obtain the best drive mode switching control and speed and torque distribution strategy.
Technical Paper

Tooth Profile Modification Analysis of Fine-Pitch Planetary Gears for High-Speed Electric Drive Axles Based on KISSsoft

2021-12-31
2021-01-7016
According to the requirements of high transmission ratio and high load torque of high-speed electric drive axle planetary gear system, the design and analysis of fine-pitch planetary gear system with small modulus, small pressure angle and high full tooth height of are carried out. In order to improve the bearing capacity of gear and reduce gear meshing noise, the tooth profile modification parameters of gear system are optimized. In this paper, the tooth modification methods are analyzed and the gear train parameters are determined. The influence degree of different tooth modification methods on the transmission performance of the gear train is determined by orthogonal experiment method. The transmission error is reduced, the stress fluctuation is improved, and the gear meshing performance is greatly improved by adopting the appropriate modification scheme, which proves the effectiveness of the tooth modification scheme.
Technical Paper

Research on Braking Energy Recovery Strategy of Pure Electric Vehicle

2021-10-11
2021-01-1264
With the increasingly serious global environmental and energy problems, as well as the increasing number of vehicles, pure electric vehicles with its advantages of environmental protection, low noise and renewable energy, become an effective way to alleviate environmental pollution and energy crisis. Due to the current pure electric vehicle power battery technology is not perfect, the range of pure electric vehicle has a great limit. Through the braking energy recovery, the energy can be reused, the energy utilization rate can be improved, and the battery life of pure electric vehicles can be improved. In this paper, a pure electric vehicle is taken as the analysis object, and the whole vehicle analysis model is built. Through the comparative analysis, based on the driver's braking intention and vehicle running state, the braking energy recovery control strategy of double fuzzy control is proposed.
Technical Paper

Structural Design and Analysis of Battery Protection Device for Electric Truck

2021-04-06
2021-01-0795
The development of electrification is widely considered to be the key to the transportation industry. In recent years, the number of electric trucks on the road is increasing year by year, so the safety of electric trucks is of great importance. At present, the batteries of electric trucks are mostly arranged on the two sides of the trucks. The protective devices are only the guardrails fixed on the vehicle body, so the protective effect is poor. In view of this situation, this paper designed a battery protection device for electric truck. When the truck is hit in a side collision, the transverse guardrail first generates plastic deformation and absorbs kinetic energy. At this time, the collision force is transmitted to the energy-absorbing box along the moving direction of the side collision vehicle, and the energy-absorbing box is contracted to produce a buffer effect.
Technical Paper

The Driving Planning of Pure Electric Commercial Vehicles on Curved Slope Road in Mountainous Area Based on Vehicle-Road Collaboration

2021-04-06
2021-01-0174
The mountain roads are curved and complicated, with undulating terrain and large distance between charging stations. Compared with traditional powered vehicles, in addition to safety issues, pure electric vehicles also need to deal with the driving range issue. At present, the relevant researches on automobile driving in mountainous areas mainly focus on the driving safety of traditional fuel oil vehicles when going uphill and downhill, while there are few researches on the driving planning of pure electric commercial vehicles on curved slope road. This paper presents a speed planning method for pure electric commercial vehicles based on vehicle-road collaboration technology. First, establish the vehicle dynamics model, analyze the vehicle dynamics characteristics when passing the downhill curve, calculate the safe speed range of the vehicle when passing the downhill curve, and establish the safe speed model of the downhill curve.
Technical Paper

A Study on Heat Dissipation of Electric Vehicle Motor Based on Heat-Pipe Heat Transfer Analysis

2021-04-06
2021-01-0208
With the increasingly serious problems of environmental pollution and energy shortage, electric vehicles have a promising future. As a core component of electric vehicles, the drive motor is developing towards high power density of which remains temperature rise problems, which affects the performance, efficiency and service life of the drive motor. Liquid cooling has high energy consumption and poor reliability. The heat-pipe has excellent heat conduction and temperature uniformity capabilities. Therefore, this paper proposes a heat pipe-based drive motor heat dissipation system to make the heat-pipe act on the inside of the motor to reach a specified range of driving conditions. The drive motor can better dissipate heat through the heat-pipe. Firstly, analysis of the internal heat generation mechanism of the motor, heat transfer characteristics of the heat-pipe and the heat-pipe layout plan was established.
Technical Paper

Overload Identification System Based on Vibration State of Two-Axle Vehicle

2021-04-06
2021-01-0172
The non-contact overload recognition method refers to the method of detecting the vibration state of the vehicle through visual recognition without touching the vehicle, and then calculating the vehicle load in combination with the vehicle dynamics model to determine whether the passing vehicle is overloaded. Due to the convenience of detection, low cost of infrastructure and informatization, this method has great advantages in the field of overload identification. However, the model used in this recognition method is the single mass vibration model at present, which will have a large error due to the interaction between the front and rear suspension, and the position of the center of mass needs to be acquired in the recognition process, which is difficult in the actual identification process. In this paper, a vehicle vibration model containing two modes of vibration is proposed, and uses Sobol algorithm to analyze the parameter sensitivity of the model.
Technical Paper

Research on Heat Management Performance of Heat Pipe-Fin Based on Optimal Design

2021-04-06
2021-01-0752
As one of the core components of electric vehicle, the performance of power battery is largely determined by thermal management system. Air cooling is difficult to meet the heat dissipation requirements of high-power power batteries. Liquid cooling arrangement is complex and requires high sealing performance. Phase change materials will increase the mass of battery packs. Heat pipes have good heat conduction, temperature equalization performance and light weight, and it is an ideal cooling and heat dissipation technology with efficient cooling fins. In this paper, a thermal management system of power battery based on heat pipe and fin is proposed. The maximum temperature and wall temperature difference of power battery are reduced by heat pipe and fin heat dissipation. The influence of different fin spacing and heights on the thermal management system is studied, and then the fin spacing and height are optimized.
Technical Paper

Research on Parallel Regenerative Braking Control of the Electric Commercial Vehicle Based on Fuzzy Logic

2021-04-06
2021-01-0119
Regenerative braking is an effective technology to extend the driving range of electrified vehicles by recovering kinetic energy from braking. This paper focuses on the design of the regenerative braking control strategy for a commercial vehicle which requires significantly larger braking power than passenger cars. To maximize the energy recovery while ensuring the braking efficiency of the vehicle and its braking safety, this paper proposed a fuzzy logic strategy for regenerative braking control, and a feasibility study was conducted for an electric van. The work includes in three steps. Firstly, state variables that significantly affect regenerative braking performance, i.e., vehicle speed, battery State-of-Charge (SOC), and braking intensity, are identified based on mathematical modelling of the vehicle system dynamics in braking maneuver.
Journal Article

Detection & Tracking of Multi-Scenic Lane Based on Segnet-LSTM Semantic Split Network

2021-04-06
2021-01-0083
Lane detection is an important component in automatic pilot system and advanced driving assistance system (ADAS). The stability and precision of lane detection will directly determine precision of control and lane plan of vehicles. Traditional mechanical vision lane detection approaches in complicated environment have the deficiencies of low precision and feature semantic description disabilities. But the lane detection depending on deep learning, e.g. SCNN network, LaneNet network, ENet-SAD network have imbalance problems of splitting precision and storage usage. This paper proposes an approach of high-efficiency deep learning Segnet-LSTM semantic segmentation network. This network structure is composed with encoding network and corresponding decoding networks. First, convolution and maximum pooling. The proposal extracts texture details of five images and stores searching position of maximum pooling. Meanwhile, it will implement interpolate processing to the lost points.
Technical Paper

Pre-Curve Braking Planning of Battery Electric Vehicle Based on Vehicle Infrastructure Cooperative System

2020-10-05
2020-01-1643
Braking energy recovery is an important method for Battery Electric Vehicle (BEV) to save energy and increase driving range. The vehicle braking system performs regenerative braking control based on driver operations. Different braking operations have a significant impact on energy recovery efficiency. This paper proposes a method for planning the braking process of a BEV based on the Intelligent Vehicle Infrastructure Cooperative System (IVICS). By actively planning the braking process, the braking energy recovery efficiency is improved. Vehicles need to decelerate and brake before entering a curve. The IVICS is used to obtain information about the curve section ahead of the vehicle's driving route. Then calculating the reference speed of the curve, and obtaining the vehicle's braking target in advance, so as to actively plan the vehicle braking process.
X