Refine Your Search

Topic

Search Results

Technical Paper

Fuzzy Control of Regenerative Braking on Pure Electric Garbage Truck Based on Particle Swarm Optimization

2024-04-09
2024-01-2145
To improve the braking energy recovery rate of pure electric garbage removal vehicles and ensure the braking effect of garbage removal vehicles, a strategy using particle swarm algorithm to optimize the regenerative braking fuzzy control of garbage removal vehicles is proposed. A multi-section front and rear wheel braking force distribution curve is designed considering the braking effect and braking energy recovery. A hierarchical regenerative braking fuzzy control strategy is established based on the braking force and braking intensity required by the vehicle. The first layer is based on the braking force required by the vehicle, based on the front and rear axle braking force distribution plan, and uses fuzzy controllers.
Technical Paper

Improve the Durability and Maintenance Feasibility of the Universal Joint Based on the Original Half-Shaft Foundation

2024-04-09
2024-01-2441
Based on the particularity of the racing field of the Baja SAE China, the Baja Racing Team of our university has adopted rzeppa universal joint for vehicle design and field competition in the semi-axle parts of the race car in previous years. In view of the complex conditions of the Baja Competition, such as gravity test, climb test, handling test, endurance test, etc., it is necessary to optimize and develop a more convenient maintenance model. Installation and use of better performance, more suitable for off-road conditions of the shaft. In this paper, based on the development dynamics of automobile axles and the transverse comparison of various axles, a kind of telescopic cross-shaft universal joint axles is designed by using CATIA software to model and simulate kinematics and dynamics by using ANSYS software. At the same time, the stress and strain of the model are continuously optimized according to the change of axle wheel Angle and the torque matching of Baja Racing.
Technical Paper

Dynamic Simulation and Optimization of Vehicle-Mounted Multifunctional Mechan-Ical Arm

2023-04-11
2023-01-0772
The multi-functional mechanical arm equipped on engineering vehicle can achieve different functions by installing different mechanism devices through the interface at the end of the mechanical arm. It can achieve functions like engineering construction and road rescue. Mechanical arm systems often work in complex environments, which requires good reliability and safety of the boom system. When the mechanical boom is working, the pressure of each luffing cylinder is large, and the contact force and acceleration of each boom are complex, which requires a certain degree of verification and optimization before it can be put into production. In this paper, a virtual prototype of a vehicle mounted hydraulic mechanical arm with four booms is established. Through ADAMS, the dynamic analysis of mechanical arm under multiple working conditions is carried out, the movement parameter changes and the pressure changes of each luffing cylinder are analyzed.
Technical Paper

Research on Overload Dynamic Identification Based on Vehicle Vertical Characteristics

2023-04-11
2023-01-0773
With the development of highway transportation and automobile industry technology, highway truck overload phenomenon occurs frequently, which poses a danger to road safety and personnel life safety. So it is very important to identify the overload phenomenon. Traditionally, static detection is adopted for overload identification, which has low efficiency. Aiming at this phenomenon, a dynamic overload identification method is proposed. Firstly, the coupled road excitation model of vehicle speed and speed bump is established, and then the 4-DOF vehicle model of half car is established. At the same time, considering that the double input vibration of the front and rear wheels will be coupled when vehicle passes through the speed bump, the model is decoupled. Then, the vertical trajectory of the body in the front axle position is obtained by Carsim software simulation.
Technical Paper

Research on Cooperative Adaptive Cruise Control (CACC) Based on Fuzzy PID Algorithm

2023-04-11
2023-01-0682
For cooperative adaptive cruise control (CACC) system, a robust following control algorithm based on fuzzy PID principle is adopted in this paper. Firstly, a nonlinear vehicle dynamics model considering the lag of driving force and acceleration constraints was established. Then, with the vehicle’s control hierarchic, the upper controller takes the relative speed between vehicles and the spacing error as inputs to output the following vehicle's target acceleration, while the lower controller takes the target acceleration as inputs and the throttle opening and brake master cylinder pressure as outputs. For the setting of target spacing, this paper additionally considers the relative speed between vehicles and the acceleration of the front vehicle. Through testing, compared with the traditional variable safety distance model, the average distance reduces by 5.43% when leading vehicle is accelerating, while increases by 2.74% in deceleration.
Technical Paper

Research on Regenerative Braking Control Strategy of Commercial Vehicles Considering Battery Power Status

2023-04-11
2023-01-0536
Regenerative braking is an effective way to increase the cruising range of vehicles. In commercial vehicles with large vehicle mass, regenerative braking can be maintained in a high-power working state for a long time theoretically because of the large braking torque and long braking time. But in fact, it is often impossible to run at full power because of battery safety problems. In this paper, a control strategy is designed to maintain the maximum power operation of regenerative braking as much as possible. The maximum charging power of the battery is obtained through the battery model, and it is set as the battery limiting parameter. The regenerative braking torque and power are obtained by using the motor model. The eddy current retarder is used to absorb the excess power that the battery can't bear, and the braking torque of the eddy current retarder is calculated. Finally, mechanical braking is used to make up the insufficient braking torque.
Technical Paper

LSTM-Based Trajectory Tracking Control for Autonomous Vehicles

2022-12-22
2022-01-7079
With the improvement of sensor accuracy, sensor data plays an increasingly important role in intelligent vehicle motion control. Good use of sensor data can improve the control of vehicles. However, data-based end-to-end control has the disadvantages of poorly interpreted control models and high time costs; model-based control methods often have difficulties designing high-fidelity vehicle controllers because of model errors and uncertainties in building vehicle dynamics models. In the face of high-speed steering conditions, vehicle control is difficult to ensure stability and safety. Therefore, this paper proposes a hybrid model and data-driven control method. Based on the vehicle state data and road information data provided by vehicle sensors, the method constructs a deep neural network based on LSTM and Attention, which is used as a compensator to solve the performance degradation of the LQR controller due to modeling errors.
Technical Paper

A Multi-Axle and Multi-Type Truck Load Identification System for Dynamic Load Identification

2022-03-29
2022-01-0137
Overloading of trucks can easily cause damage to roads, bridges and other transportation facilities, and accelerate the fatigue loss of the vehicles themselves, and accidents are prone to occur under overload conditions. In recent years, various countries have formulated a series of management methods and governance measures for truck overloading. However, the detection method for overload behavior is not efficient and accurate enough. At present, the method of dynamic load identification is not perfect. No matter whether it is the dynamic weight measurement method of reconstructing the road surface or the non-contact dynamic weight measurement method, little attention is paid to the difference of different vehicles. Especially for different vehicles, there should be different load limits, and the current devices are not smart enough.
Technical Paper

Vehicle Feature Recognition Method Based on Image Semantic Segmentation

2022-03-29
2022-01-0144
In the process of truck overload and over-limit detection, it is necessary to detect the characteristics of the vehicle's size, type, and wheel number. In addition, in some vehicle vision-based load recognition systems, the vehicle load can be calculated by detecting the vibration frequency of specific parts of the vehicle or the change in the length of the suspension during the vehicle's forward process. Therefore, it is essential to quickly and accurately identify vehicle features through the camera. This paper proposes a vehicle feature recognition method based on image semantic segmentation and Python, which can identify the length, height, number of wheels and vibration frequency at specific parts of the vehicle based on the vehicle driving video captured by the roadside camera.
Technical Paper

Research on Brake Pad Particle Emissions and Temperature Reduction of a Brake Disc in Air Controlling System

2022-03-29
2022-01-0330
This paper addresses the brake pad particle emission during the braking process of a vehicle in motion. The frictional-constant contact between the disc brake and pads results in an increased temperature and wear of the pads. The emission of brake pad particles into the atmosphere leads to an increase in air pollution and hence becomes hazardous to the human body. In this paper, a wheel brake disc is installed in a ventilation system where the specific air flow is introduced in order to investigate the thermal performance and the emission of particles from the brake pads. A mathematical model using the fundamental parameters of the brake disc and ventilation system is established. The behavior of the heat transfer is studied using computational fluid dynamics (CFD). The particle emission rate from the pads is calculated under the assumption of uniform constant pressure distribution at the contact surface of the brake disc and pad.
Technical Paper

Design and Simulation of Active Anti-Rollover Control System for Heavy Trucks

2022-03-29
2022-01-0909
With the rapid development of the logistics and transportation industry, heavy-duty trucks play an increasingly important role in social life. However, due to the characteristics of large cargo loads, high center of mass and relatively narrow wheelbase, the driving stability of heavy trucks are poor, and it is easy to cause rollover accidents under high-speed driving conditions, large angle steering and emergency obstacle avoidance. To improve the roll stability of heavy trucks, it is necessary to design an active anti-rollover control system, through the analysis of the yaw rate and the load transfer rate of the vehicle, driving states can be estimated during the driving process. Under the intervention of the control system, the lateral transfer rate of heavy trucks can be reduced to correct the driving posture of the vehicle body and reduce the possibility of rollover accidents.
Technical Paper

Measurement and Evaluation of the Conversion of Thermal Energy Generated on the Contact Surface of the Brake Disc into Electrical Energy Using a Thermoelectric Generator

2022-03-29
2022-01-0188
Heat generated by friction between the brake discs and the brake pad causes the disc temperature to rise, which affects the braking performance. This flux generated from the contact surface of the vehicle brake disc not only affects the braking performance but also tends to be wasted and pollutes the environment. However, an accurate system is needed to make efficient use of this generated heat flux, which is usually wasted. Thermoelectric generators (TEGs) are solid-state gadgets utilized in the conversion of heat to electricity. Hence, the aim of this study is to convert the heat flux generated at the disc contact surface into electrical energy by employing a thermoelectric generator. In Addition, the energy harvested energy to power the battery, which in turn charges the temperature monitoring systems. Thermoelectric generators were positioned at different geometrical points of the brake discs to achieve optimal efficiency and energy storage possibilities.
Technical Paper

Analytical Modeling and Multi-Objective Optimization of the Articulated Vehicle Steering System

2022-03-29
2022-01-0879
The articulated steering system is widely used in engineering vehicles due to its high mobility and low steering radius. The design parameters have a vital impact on the selection of the steering system assemblies, such as the operation stroke, pressure, and force of the hydraulic cylinders during the steering process, which will affect the system weight. The system energy consumption is also relevant to the geometry parameters. According to the kinetic analysis of the steering system and dynamic analysis of the steering process, the kinetic model of an engineering vehicle steering system is built, and the length and pressure variation of the cylinder is calculated and validated by the field test. The influence of the factors is analyzed based on the established model. To lower the system weight, needed pressure, and force, the multi-objective particle swarm optimization method is initiated to optimize the geometry parameter of the articulated steering system.
Technical Paper

Tooth Profile Modification Analysis of Fine-Pitch Planetary Gears for High-Speed Electric Drive Axles Based on KISSsoft

2021-12-31
2021-01-7016
According to the requirements of high transmission ratio and high load torque of high-speed electric drive axle planetary gear system, the design and analysis of fine-pitch planetary gear system with small modulus, small pressure angle and high full tooth height of are carried out. In order to improve the bearing capacity of gear and reduce gear meshing noise, the tooth profile modification parameters of gear system are optimized. In this paper, the tooth modification methods are analyzed and the gear train parameters are determined. The influence degree of different tooth modification methods on the transmission performance of the gear train is determined by orthogonal experiment method. The transmission error is reduced, the stress fluctuation is improved, and the gear meshing performance is greatly improved by adopting the appropriate modification scheme, which proves the effectiveness of the tooth modification scheme.
Technical Paper

Research on Braking Energy Recovery Strategy of Pure Electric Vehicle

2021-10-11
2021-01-1264
With the increasingly serious global environmental and energy problems, as well as the increasing number of vehicles, pure electric vehicles with its advantages of environmental protection, low noise and renewable energy, become an effective way to alleviate environmental pollution and energy crisis. Due to the current pure electric vehicle power battery technology is not perfect, the range of pure electric vehicle has a great limit. Through the braking energy recovery, the energy can be reused, the energy utilization rate can be improved, and the battery life of pure electric vehicles can be improved. In this paper, a pure electric vehicle is taken as the analysis object, and the whole vehicle analysis model is built. Through the comparative analysis, based on the driver's braking intention and vehicle running state, the braking energy recovery control strategy of double fuzzy control is proposed.
Technical Paper

Vehicle Accelerator and Brake Pedal On-Off State Judgment by Using Speed Recognition

2021-04-16
2021-01-5038
The development of intelligent transportation improves road efficiency, reduces automobile energy consumption, and improves driving safety. The core of intelligent transportation is the two-way information interaction between vehicles and the road environment. At present, road environmental information can flow to the vehicle, while the vehicle’s information rarely flows to the outside world. The electronic throttle and electronic braking systems of some vehicles use sensors to get the state of the accelerator and brake pedal, which can be transmitted to the outside environment through technologies such as the Internet of Vehicles. But the Internet of Vehicles technology has not been widely used, and it relies on signal sources, which is a passive way of information acquisition. In this paper, an active identification method is proposed to get the vehicle pedal on-off state as well as the driver’s operation behavior through existing traffic facilities.
Technical Paper

Research on Braking Safety of Parallel Hybrid Electric Buses on Long Downhill Based on Gradient and Speed Change

2021-04-06
2021-01-0973
When driving in mountainous areas, vehicles often encounter long downhill sections. Due to the large mass of bus and the drum brake with poor heat dissipation effect, it is easy for bus to produce braking thermal decay in long downhill section, which makes the vehicle out of control and causes safety accidents. The braking methods of parallel hybrid electric bus include drum braking, engine braking and regenerative braking, whose torque models are established in this paper. The coasting test in Trucksim is used to verify the correctness of the engine braking torque model. Based on coupling braking torque curve with vehicle speed in different gradient, the stable speed is determined and the shift strategy is proposed. The temperature rise model of brake drum is established to analyze the temperature change of brake drum during long downhill. Then, according to the ramp data of G22 freeway, the above models are simulated.
Technical Paper

Analysis of Alcohol-Impaired Driving on Vehicle Dynamic Control of Steering, Braking and Acceleration Behaviors in Female Drivers

2021-04-06
2021-01-0859
Road traffic accidents resulting from alcohol-impaired driving are increasing globally despite several measures, currently in place, to curb the trend. For this reason, recent research aims at integrating alcohol early-detection systems and driving simulator experiments to identify intoxicated drivers. However, driving simulator experiments on drunk driving have focused mostly on male participants than female drivers whose characteristics have scarcely been explored. Hence in this paper, vehicle dynamic control inputs on steering, braking, and acceleration performance of 75 licensed female drivers with an upshot of alcohol at four different blood alcohol concentration (BAC) levels (0%, 0.03%, 0.05%, and 0.08%) were investigated. The participants completed simulated driving in a fixed-based simulator experiment coupled with real-time ecological scenarios to extract discrete responses.
Technical Paper

Safety Speed Warning System for Tank Truck against Rollover

2021-04-06
2021-01-0978
The tank truck has a wide range of application. When the liquid in the tank is not fully loaded, the lateral movement of the liquid in the tank will shift the center of gravity of the tank truck and make the vehicle less safe. It is easy to roll over when the tank truck is turning. This study combines the vehicle dynamic characteristics and geographic information, which gives the driver safe speed and safe braking distance tips before turning, to reduce the traffic accidents caused by driver's misjudgment. The dynamic model of the tank truck is established, through collecting the real-time information of the vehicle, the vehicle load and braking torque are calculated by the relevant dynamic model. The system needs to measure the deviation of the center of gravity in the tank truck movement process, and the deviation of the center of gravity has a great influence on the safety speed.
Technical Paper

The Driving Planning of Pure Electric Commercial Vehicles on Curved Slope Road in Mountainous Area Based on Vehicle-Road Collaboration

2021-04-06
2021-01-0174
The mountain roads are curved and complicated, with undulating terrain and large distance between charging stations. Compared with traditional powered vehicles, in addition to safety issues, pure electric vehicles also need to deal with the driving range issue. At present, the relevant researches on automobile driving in mountainous areas mainly focus on the driving safety of traditional fuel oil vehicles when going uphill and downhill, while there are few researches on the driving planning of pure electric commercial vehicles on curved slope road. This paper presents a speed planning method for pure electric commercial vehicles based on vehicle-road collaboration technology. First, establish the vehicle dynamics model, analyze the vehicle dynamics characteristics when passing the downhill curve, calculate the safe speed range of the vehicle when passing the downhill curve, and establish the safe speed model of the downhill curve.
X