Refine Your Search

Topic

Search Results

Technical Paper

Automatic Optimization Method for FSAE Racing Car Aerodynamic Kit Based on the Integration of CAD and CAE

2024-04-09
2024-01-2079
In the process of designing the aerodynamic kit for Formula SAE racing cars, there is a lot of repetitive work and low efficiency in optimizing parameters such as wing angle of attack and chord length. Moreover, the optimization of these parameters in past designs heavily relied on design experience and it's difficult to achieve the optimal solution through theoretical calculations. By establishing a parametric model in CAD software and integrating it with CFD software, we can automatically modify model parameters, run a large number of simulations, and analyze the simulation results using statistical methods. After multiple iterations, we achieve fully automatic parameter optimization and obtain higher negative lift. At the same time, the simulation process is optimized, and simulations are run based on GPUs, resulting in a significant increase in simulation speed compared to the original.
Technical Paper

Lightweight Design of Integrated Hub and Spoke for Formula Student Racing Car

2024-04-09
2024-01-2080
In the racing world, speed is everything, and the Formula Student cars are no different. As one of the key means to improve the speed of the car, lightweight plays an important role in the racing world. The weight reduction of unsprung metal parts can not only improve the driving speed, but also effectively optimize the dynamic of the car, so the lightweight design of unsprung parts has attracted much attention. In the traditional Formula Student racing car, the hub and spoke are two independent parts, they are fixed by four hub bolts or a central locking nut, the material of these fasteners is usually steel, so it brings a lot of weight burden. In order to achieve unsprung lightweight, a new type of wheel part design of Formula Student racing car is proposed in this paper. The hub and spoke are designed as integrated aluminum alloy parts, effectively eliminating the mass of hub bolts or central locking nuts.
Technical Paper

Fuzzy Control of Regenerative Braking on Pure Electric Garbage Truck Based on Particle Swarm Optimization

2024-04-09
2024-01-2145
To improve the braking energy recovery rate of pure electric garbage removal vehicles and ensure the braking effect of garbage removal vehicles, a strategy using particle swarm algorithm to optimize the regenerative braking fuzzy control of garbage removal vehicles is proposed. A multi-section front and rear wheel braking force distribution curve is designed considering the braking effect and braking energy recovery. A hierarchical regenerative braking fuzzy control strategy is established based on the braking force and braking intensity required by the vehicle. The first layer is based on the braking force required by the vehicle, based on the front and rear axle braking force distribution plan, and uses fuzzy controllers.
Technical Paper

Study on Evaluation Method of Drivability of Hybrid Electric Vehicle Based on Ensemble Empirical Mode Decomposition Noise Reduction Method

2023-11-22
2023-01-5083
During the drivability test process, a large amount of noise generated by a series of internal and external factors of the vehicle reduces the accuracy of the drivability evaluation. To solve this problem, this paper introduces the EEMD denoising method and compares the denoising effects of the EMD denoising method and EEMD denoising method on the original signal using the entropy weight evaluation index. In addition, the optimal parameter setting is obtained by comparing the denoising results of different parameter settings in the EEMD denoising method. The results show that when the white noise is integrated 3000 times and the standard deviation of white noise is 0.1, the EEMD noise reduction method is the best, and the comprehensive score of noise reduction is 0.732 points higher than that of EMD.
Technical Paper

Dynamic Simulation and Optimization of Vehicle-Mounted Multifunctional Mechan-Ical Arm

2023-04-11
2023-01-0772
The multi-functional mechanical arm equipped on engineering vehicle can achieve different functions by installing different mechanism devices through the interface at the end of the mechanical arm. It can achieve functions like engineering construction and road rescue. Mechanical arm systems often work in complex environments, which requires good reliability and safety of the boom system. When the mechanical boom is working, the pressure of each luffing cylinder is large, and the contact force and acceleration of each boom are complex, which requires a certain degree of verification and optimization before it can be put into production. In this paper, a virtual prototype of a vehicle mounted hydraulic mechanical arm with four booms is established. Through ADAMS, the dynamic analysis of mechanical arm under multiple working conditions is carried out, the movement parameter changes and the pressure changes of each luffing cylinder are analyzed.
Technical Paper

Simulation Analysis and Experimental Study of Baja Racing Car Frame Based on Special Working Conditions

2023-04-11
2023-01-0812
As an off-road racing car, driving conditions for a Baja racing car are particularly complex. Extreme working conditions such as deep pits and rocky roads have put higher demand on structural strength and frame safety. To solve this problem, extreme working conditions are first studied to check the safety of the steel tube frame of Baja racing cars. Secondly, based on Noise, Vibration, and Harshness (NVH) to explore the frame's characteristics, analyze the frame's six-order mode, make the corresponding optimization, and solve the resonance problem caused by engine excitation and other factors. Finally, the natural frequency of the frame is measured to verify the effectiveness of the NVH characteristic optimization results, and it is found that the experimental results match the theoretical values. The theoretical analysis results are mainly based on ANSYS software's static and modal analysis.
Technical Paper

Pressure Drop and Heat Transfer Analysis of Power Battery Liquid Cooling System

2022-12-16
2022-01-7122
The battery liquid cooling system can ensure that the battery works within a suitable temperature range, improve the safety performance of the battery system, and ensure the cruising range. This paper introduces a design scheme of a stamped double-parallel liquid cooling plate. Based on the STAR-CCM+ simulation software, a thermal simulation model of the battery management system is established to analyze the thermal behavior of the battery system and to study the effect of the inlet mass flow rate on the temperature of the top surface of the batteries. At the same time, with the analysis of the proportion of pressure drop of each component in the liquid cooling plate, an optimization of inserted part in the liquid cooling plate is proposed. The numerical analysis results are compared with the experimental results of the pressure drop to improve the effectiveness of the optimization scheme.
Technical Paper

Research on Brake Pad Particle Emissions and Temperature Reduction of a Brake Disc in Air Controlling System

2022-03-29
2022-01-0330
This paper addresses the brake pad particle emission during the braking process of a vehicle in motion. The frictional-constant contact between the disc brake and pads results in an increased temperature and wear of the pads. The emission of brake pad particles into the atmosphere leads to an increase in air pollution and hence becomes hazardous to the human body. In this paper, a wheel brake disc is installed in a ventilation system where the specific air flow is introduced in order to investigate the thermal performance and the emission of particles from the brake pads. A mathematical model using the fundamental parameters of the brake disc and ventilation system is established. The behavior of the heat transfer is studied using computational fluid dynamics (CFD). The particle emission rate from the pads is calculated under the assumption of uniform constant pressure distribution at the contact surface of the brake disc and pad.
Technical Paper

Research on Dust Suppression of Dump Truck

2022-03-29
2022-01-0786
When dump trucks unload dusty materials, dust particles with a diameter of 1 to 75 microns slide out of the dump body and float into the air. Dust particles naturally settle down spending a few hours, which causes air pollution. People who work in this environment daily suffer serious physical harm. To study the movement of dust particles during the unloading process, a scaled-down model is used to simulate the process of dump truck unloading gravel, and a high frame rate camera is used to record the movement trajectory of dust particles during the unloading process. In this paper, by observing the movement process of unloading dust particles by dump trucks, based on the principle of dynamics, a mathematical model describing the unloading of dust particles in the dump body and a mathematical model of the diffusion of dust particles in the air are established. Take the small gravel sampled at the construction site as an example of the experiment.
Technical Paper

PHEV Energy Management Optimization Based on Multi-Island Genetic Algorithm

2022-03-29
2022-01-0739
The plug-in hybrid electric vehicle (PHEV) gradually moves into the mainstream market with its excellent power and energy consumption control, and has become the research target of many researchers. The energy management strategy of plug-in hybrid vehicles is more complicated than conventional gasoline vehicles. Therefore, there are still many problems to be solved in terms of power source distribution and energy saving and emission reduction. This research proposes a new solution and realizes it through simulation optimization, which improves the energy consumption and emission problems of PHEV to a certain extent. First, on the basis that MATLAB software has completed the modeling of the key components of the vehicle, the fuzzy controller of the vehicle is established considering the principle of the joint control of the engine and the electric motor.
Technical Paper

Study on Passenger Cabin under Passive Radiative Cooling Film

2022-03-29
2022-01-0191
Radiative cooling uses the cold space source to cool the object. The radiative cooling film prepared based on the principle can reduce the fuel consumption of automobile air conditioning refrigeration. In this paper, according to the passive radiative cooling principle, taking SiO2 as the radiative cooling film of infrared radiation material, the theoretical cooling value of the passenger compartment of the automobile is calculated and analyzed based on the heat balance equation. The influence of radiative cooling film on the temperature field of passenger cabins was studied by finite element analysis. The results show that the cooling film made of SiO2 as passive radiation material has an apparent cooling effect on the passenger cabins. At the ambient temperature of 35.15°C, the theoretical cooling temperature is 6.7K. When the radiative cooling film is applied to automobiles, the cooling value of the passenger cabin body, seat, instrument panel, and other parts reaches 2.2K-5.1K.
Technical Paper

The Development of Software for Automobile Sound Modulation and Application

2022-03-29
2022-01-0611
Based on the technology of the order tracking and extraction, a software for the modulation of sound quality of automotive order sound is developed in this paper. The order analysis, the amplitude modulation of order sound in specific speed range and the calculation of the functional expression of the order sound amplitude are integrated in this software. Furthermore, a side-valve interpolation correction algorithm (SV-ICA) is proposed to solve the problem that the smooth transition of the order sound curve at endpoints cannot be guaranteed, which would result in the appearance of abnormal noise in the modulated sounds. The application of built software in constructing the automobile sounds with the sound quality of sportiness is demonstrated.
Technical Paper

On the Effect of Low-Viscosity Oil on Automobile Pollutant Emissions Based on Worldwide Harmonized Light Vehicles Test Cycle

2021-09-10
2021-01-5087
In order to study the influence of low-viscosity oil on automobile pollutant emissions reduction, three different 0W20 oil samples were prepared with oil 5W30 as the base oil. Parameters such as the oil viscosity, ash, and element content were tested at different stages, speeds, and accelerations of the Worldwide Harmonized Light Vehicles Test Cycle (WLTC). The results showed the effects of low-viscosity oil on exhaust emissions reduction were mainly concentrated in the low-speed and extra high-speed segment. At the low-speed segment, especially in the starting stage, carbon monoxide (CO), total hydrocarbon (THC), and non-methane hydrocarbon (NMHC) emissions can be reduced. The use of low ash oil can reduce nitrogen oxides (NOx) emissions; the methane (CH4) emissions can be reduced by increasing the Zinc (Zn) content in engine oil moderately.
Technical Paper

Parameter Optimization of Off-Road Vehicle Frame Based on Sensitivity Analysis, Radial Basis Function Neural Network, and Elitist Non-dominated Sorting Genetic Algorithm

2021-08-10
2021-01-5082
The lightweight design of a vehicle can save manufacturing costs and reduce greenhouse gas emissions. For the off-road vehicle and truck, the chassis frame is the most important load-bearing assembly of the separate frame construction vehicle. The frame is one of the most assemblies with great potential to be lightweight optimized. However, most of the vehicle components are mounted on the frame, such as the engine, transmission, suspension, steering system, radiator, and vehicle body. Therefore, boundaries and constraints should be taken into consideration during the optimal process. The finite element (FE) model is widely used to simulate and assess the frame performance. The performance of the frame is determined by the design parameters. As one of the largest components of the vehicle, it has a lot of parameters. To improve the optimum efficiency, sensitivity analysis is used to narrow the range of the variables.
Technical Paper

Research on Parallel Regenerative Braking Control of the Electric Commercial Vehicle Based on Fuzzy Logic

2021-04-06
2021-01-0119
Regenerative braking is an effective technology to extend the driving range of electrified vehicles by recovering kinetic energy from braking. This paper focuses on the design of the regenerative braking control strategy for a commercial vehicle which requires significantly larger braking power than passenger cars. To maximize the energy recovery while ensuring the braking efficiency of the vehicle and its braking safety, this paper proposed a fuzzy logic strategy for regenerative braking control, and a feasibility study was conducted for an electric van. The work includes in three steps. Firstly, state variables that significantly affect regenerative braking performance, i.e., vehicle speed, battery State-of-Charge (SOC), and braking intensity, are identified based on mathematical modelling of the vehicle system dynamics in braking maneuver.
Technical Paper

Fuzzy Control Model of Intelligent Lane-Changing Decision Based on Genetic Algorithm Optimization

2021-03-09
2021-01-5017
Based on the fuzzy inference system, it constructs a discretionary lane-changing decision model for different types of preceding vehicles and compares and analyzes the parameter differences of their input membership functions. According to the driver questionnaire survey, the model uses three parameters that drivers can easily percept as the model input—preceding vehicle distance in the current lane, preceding vehicle distance in the target lane, and following-vehicle distance in the target lane—uses Next-Generation Simulation (NGSIM) vehicle trajectory data to optimize the input membership functions of models based on genetic algorithm according to different vehicle lane-changing trajectory data to analyze the impact of the preceding vehicle type before lane change to the intelligent lane-changing decision.
Technical Paper

Study on the Influence of Low-Viscosity Engine Oil on Engine Friction and Vehicle Worldwide Harmonized Light Vehicles Test Cycle Fuel Economy

2020-09-23
2020-01-5062
To study the mechanism of the effect of low-viscosity oils on engine friction loss reduction so as to improve the vehicle fuel economy of the Worldwide harmonized Light vehicles Test Cycle (WLTC) by upgrading the Society of Automotive Engineers (SAE) viscosity grade of the factory fill oil from 5W30 to 0W20, eight 0W20 oil samples were blended with different doses of base oil, viscosity modifier (VM), and friction modifier (FM). Theoretical analysis by AVL-EXCITE simulation of the key friction pairs combined with practical engine friction torque test and vehicle WLTC fuel consumption tests were carried out. The results showed that 0W20 oils can effectively reduce the engine friction torque by 5.64 Nm and the friction loss by 11.95% with the throttle fully opened; while with the throttle closed, the friction torque decreased by 3.53 Nm and the friction loss by 11.26%, resulting to the improvement of the vehicle WLTC fuel economy by 2.08%.
Technical Paper

Impact Simulation and Structural Optimization of a Vehicle CFRP Engine Hood in terms of Pedestrian Safety

2020-04-14
2020-01-0626
With the rapidly developing automotive industry and stricter environmental protection laws and regulations, lightweight materials, advanced manufacturing processes and structural optimization methods are widely used in body design. Therefore, in order to evaluate and improve the pedestrian protection during a collision, this paper presents an impact simulation modeling and structural optimization method for a sport utility vehicle engine hood made of carbon fiber reinforced plastic (CFRP). Head injury criterion (HIC) was used to evaluate the performance of the hood in this regard. The inner panel and the outer panel of CFRP hood were discretized by shell elements in LS_DYNA. The Mat54-55 card was used to define the mechanical properties of the CFRP hood. In order to reduce the computational costs, just the parts contacted with the hood were modeled. The simulations were done in the prescribed 30 impact points.
Technical Paper

Research on Measurement Method of Aerodynamic Noise of Reactive Muffler

2020-04-14
2020-01-0423
The aerodynamic noise of the reactive muffler is generated inside the muffler and mixed with the noise of the muffler body, which is difficult to be measured in the exhaust system. Based on two-microphone transfer function method and transmission loss of mufflers in the absence of airflow, this paper proposes a method for measuring the aerodynamic noise of the muffler. On the built-in muffler aerodynamic noise test bench, a special sampling tube was designed to measure the aerodynamic noise of the muffler at different flow velocity. For the sound absorption end with large reflection coefficient, the test and simulation data have large error at low frequency, and a correction formula that can eliminate the reflection of sound waves at the end of the test pipeline and form multiple reflections in the upstream and downstream is derived.
Technical Paper

Parameter Optimization of Anti-Roll Bar Based on Stiffness

2020-04-14
2020-01-0921
The anti-roll bar is an important structural component of the automobile, which can effectively prevent the automobile from rolling and improve the safety of the automobile during steering. In the design of the current anti-roll bar, the stiffness is determined by empirical or oversimplified mathematical models, often not reaching the optimal value. In this paper, eight parameters are used to determine the structure of the anti-roll bar. Combining the Deformation Energy theorem and Castigliano’s theorem, a mathematical model of the stiffness is established. The optimal solution and corresponding parameter values of the mathematical model are obtained by nonlinear programming and genetic algorithm. The influence of structural parameters on the anti-roll bar stiffness is analyzed, and the regular pattern of design is obtained. In addition, the finite element method is used to verify the stiffness solution model.
X