Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Kalman Filter Slope Measurement Method Based on Improved Genetic Algorithm-Back Propagation

2020-04-14
2020-01-0897
How to improve the measurement accuracy of road gradient is the key content of the research on the speed warning of commercial vehicles in mountainous roads. The large error of the measurement causes a significant effect of the vehicle speed threshold, which causes a risk to the vehicle's safety. Conventional measuring instruments such as accelerometers and gyroscopes generally have noise fluctuation interference or time accumulation error, resulting in large measurement errors. To solve this problem, the Kalman filter method is used to reduce the interference of unwanted signals, thereby improving the accuracy of the slope measurement. However, the Kalman filtering method is limited by the estimation error of various parameters, and the filtering effect is difficult to meet the project research requirements.
Technical Paper

Parameter Optimization of Anti-Roll Bar Based on Stiffness

2020-04-14
2020-01-0921
The anti-roll bar is an important structural component of the automobile, which can effectively prevent the automobile from rolling and improve the safety of the automobile during steering. In the design of the current anti-roll bar, the stiffness is determined by empirical or oversimplified mathematical models, often not reaching the optimal value. In this paper, eight parameters are used to determine the structure of the anti-roll bar. Combining the Deformation Energy theorem and Castigliano’s theorem, a mathematical model of the stiffness is established. The optimal solution and corresponding parameter values of the mathematical model are obtained by nonlinear programming and genetic algorithm. The influence of structural parameters on the anti-roll bar stiffness is analyzed, and the regular pattern of design is obtained. In addition, the finite element method is used to verify the stiffness solution model.
Technical Paper

Research on the Best Driving Speed of the Deceleration Bump

2020-04-14
2020-01-1088
The ride performance and stability of the vehicle will decrease while the vehicle passing a deceleration bump with relatively high speed. If the speed is too low, the road efficiency and ride comfort will be affected. It is essential to identify the proper speed taking into account all the factors. In this paper, the dynamic model of the vehicle passing through the deceleration bump is established. Three kinds of indicators vibration weighted acceleration RMS, maximum vertical vibration acceleration and wheel load impact coefficient, are used to comprehensively evaluate the ride comfort and safety. The highway model, vehicle model, and common trapezoidal cross-sections bump models are set up in Carsim. Parameters such as vertical acceleration and tire force at different vehicle speeds are obtained. Then use the spline interpolation method to fit the data, and comprehensively consider the three indicators to get the best speed.
Technical Paper

A Pre-Warning Method for Cornering Speed of Concrete Mixer Truck

2020-04-14
2020-01-1003
The high gravity center of the concrete mixer truck reduces the truck’s stability while steering. The rolling stirring tank makes the stability even worse than the regular engineering vehicle due to the dynamic variation of the centroid position. Most of the researches on the rollover stability of concrete mixer trucks focus on the rollover model establishment and dynamic simulation module. The change of concrete centroid is ignored when the safety cornering speed is calculated. This paper proposes a pre-warning method for the cornering speed of concrete mixer trucks based on centroid dynamic simulation. In the method, the mixing tank stirring model and the vehicle driving dynamic model are established on the Fluent and TruckSim simulation platforms, respectively. The theoretical speed threshold obtained by simulation is used as the evaluation index of the warning speed in the curve. Firstly, the dynamic simulation of the stirring tank model is carried out by Fluent.
Technical Paper

Passenger Cabin’s Parking Cooling System Based on TEC and Air Conditioning Condensate Water

2019-04-02
2019-01-1066
In the passenger cabin of the parking under the summer sun, the air’s average temperature will reach about 60°C. Such temperature can cause discomfort to the person who has just entered the passenger cabin, also can damage components of the passenger cabin. The reason for this phenomenon is because it is not convective with the outside air. Some vehicles use the electric power to drive the blower in order to ventilate, but the air’s temperature of cabin is so high that the blower’s effect of ventilation is limited. The system proposes to use solar energy to drive the automobile blower and the thermoelectric cooler(TEC) in order to cool the cabin’s air, and use the air-conditioning condensate water collected during the driving process to cool the TEC’s hot end to improve the cooling efficiency.
X