Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Fuzzy Control of Regenerative Braking on Pure Electric Garbage Truck Based on Particle Swarm Optimization

2024-04-09
2024-01-2145
To improve the braking energy recovery rate of pure electric garbage removal vehicles and ensure the braking effect of garbage removal vehicles, a strategy using particle swarm algorithm to optimize the regenerative braking fuzzy control of garbage removal vehicles is proposed. A multi-section front and rear wheel braking force distribution curve is designed considering the braking effect and braking energy recovery. A hierarchical regenerative braking fuzzy control strategy is established based on the braking force and braking intensity required by the vehicle. The first layer is based on the braking force required by the vehicle, based on the front and rear axle braking force distribution plan, and uses fuzzy controllers.
Technical Paper

Dynamic Simulation and Optimization of Vehicle-Mounted Multifunctional Mechan-Ical Arm

2023-04-11
2023-01-0772
The multi-functional mechanical arm equipped on engineering vehicle can achieve different functions by installing different mechanism devices through the interface at the end of the mechanical arm. It can achieve functions like engineering construction and road rescue. Mechanical arm systems often work in complex environments, which requires good reliability and safety of the boom system. When the mechanical boom is working, the pressure of each luffing cylinder is large, and the contact force and acceleration of each boom are complex, which requires a certain degree of verification and optimization before it can be put into production. In this paper, a virtual prototype of a vehicle mounted hydraulic mechanical arm with four booms is established. Through ADAMS, the dynamic analysis of mechanical arm under multiple working conditions is carried out, the movement parameter changes and the pressure changes of each luffing cylinder are analyzed.
Technical Paper

Research on Cooperative Adaptive Cruise Control (CACC) Based on Fuzzy PID Algorithm

2023-04-11
2023-01-0682
For cooperative adaptive cruise control (CACC) system, a robust following control algorithm based on fuzzy PID principle is adopted in this paper. Firstly, a nonlinear vehicle dynamics model considering the lag of driving force and acceleration constraints was established. Then, with the vehicle’s control hierarchic, the upper controller takes the relative speed between vehicles and the spacing error as inputs to output the following vehicle's target acceleration, while the lower controller takes the target acceleration as inputs and the throttle opening and brake master cylinder pressure as outputs. For the setting of target spacing, this paper additionally considers the relative speed between vehicles and the acceleration of the front vehicle. Through testing, compared with the traditional variable safety distance model, the average distance reduces by 5.43% when leading vehicle is accelerating, while increases by 2.74% in deceleration.
Technical Paper

Topology Optimization Design on Cooling-Plate for Lithium-ion Battery Based on Electro-Thermal Model

2023-04-11
2023-01-0506
A flow channel design of the battery liquid cooling plate is carried out through the variable density topology optimization method according to the heat dissipation requirements of lithium-ion power batteries under actual working conditions. Firstly, given the non-uniform heat generation of lithium battery cells, the heat generation mechanism is studied so that the battery electro-thermal model is established, then the distribution regularity of heat generation rate in the cell at different discharge rates is obtained. Subsequently, through COMSOL Multiphysics simulation software, the multi-objective topology optimization of the primary configuration radiator is conducted. The weights of the optimization objectives minimum temperature and minimum flow resistance are determined by practical engineering application. Finally, an optimized model with a volume fraction of 50% was obtained.
Technical Paper

Research on Regenerative Braking Control Strategy of Commercial Vehicles Considering Battery Power Status

2023-04-11
2023-01-0536
Regenerative braking is an effective way to increase the cruising range of vehicles. In commercial vehicles with large vehicle mass, regenerative braking can be maintained in a high-power working state for a long time theoretically because of the large braking torque and long braking time. But in fact, it is often impossible to run at full power because of battery safety problems. In this paper, a control strategy is designed to maintain the maximum power operation of regenerative braking as much as possible. The maximum charging power of the battery is obtained through the battery model, and it is set as the battery limiting parameter. The regenerative braking torque and power are obtained by using the motor model. The eddy current retarder is used to absorb the excess power that the battery can't bear, and the braking torque of the eddy current retarder is calculated. Finally, mechanical braking is used to make up the insufficient braking torque.
Technical Paper

LSTM-Based Trajectory Tracking Control for Autonomous Vehicles

2022-12-22
2022-01-7079
With the improvement of sensor accuracy, sensor data plays an increasingly important role in intelligent vehicle motion control. Good use of sensor data can improve the control of vehicles. However, data-based end-to-end control has the disadvantages of poorly interpreted control models and high time costs; model-based control methods often have difficulties designing high-fidelity vehicle controllers because of model errors and uncertainties in building vehicle dynamics models. In the face of high-speed steering conditions, vehicle control is difficult to ensure stability and safety. Therefore, this paper proposes a hybrid model and data-driven control method. Based on the vehicle state data and road information data provided by vehicle sensors, the method constructs a deep neural network based on LSTM and Attention, which is used as a compensator to solve the performance degradation of the LQR controller due to modeling errors.
Technical Paper

Pressure Drop and Heat Transfer Analysis of Power Battery Liquid Cooling System

2022-12-16
2022-01-7122
The battery liquid cooling system can ensure that the battery works within a suitable temperature range, improve the safety performance of the battery system, and ensure the cruising range. This paper introduces a design scheme of a stamped double-parallel liquid cooling plate. Based on the STAR-CCM+ simulation software, a thermal simulation model of the battery management system is established to analyze the thermal behavior of the battery system and to study the effect of the inlet mass flow rate on the temperature of the top surface of the batteries. At the same time, with the analysis of the proportion of pressure drop of each component in the liquid cooling plate, an optimization of inserted part in the liquid cooling plate is proposed. The numerical analysis results are compared with the experimental results of the pressure drop to improve the effectiveness of the optimization scheme.
Technical Paper

Research on Brake Pad Particle Emissions and Temperature Reduction of a Brake Disc in Air Controlling System

2022-03-29
2022-01-0330
This paper addresses the brake pad particle emission during the braking process of a vehicle in motion. The frictional-constant contact between the disc brake and pads results in an increased temperature and wear of the pads. The emission of brake pad particles into the atmosphere leads to an increase in air pollution and hence becomes hazardous to the human body. In this paper, a wheel brake disc is installed in a ventilation system where the specific air flow is introduced in order to investigate the thermal performance and the emission of particles from the brake pads. A mathematical model using the fundamental parameters of the brake disc and ventilation system is established. The behavior of the heat transfer is studied using computational fluid dynamics (CFD). The particle emission rate from the pads is calculated under the assumption of uniform constant pressure distribution at the contact surface of the brake disc and pad.
Technical Paper

Research on Dust Suppression of Dump Truck

2022-03-29
2022-01-0786
When dump trucks unload dusty materials, dust particles with a diameter of 1 to 75 microns slide out of the dump body and float into the air. Dust particles naturally settle down spending a few hours, which causes air pollution. People who work in this environment daily suffer serious physical harm. To study the movement of dust particles during the unloading process, a scaled-down model is used to simulate the process of dump truck unloading gravel, and a high frame rate camera is used to record the movement trajectory of dust particles during the unloading process. In this paper, by observing the movement process of unloading dust particles by dump trucks, based on the principle of dynamics, a mathematical model describing the unloading of dust particles in the dump body and a mathematical model of the diffusion of dust particles in the air are established. Take the small gravel sampled at the construction site as an example of the experiment.
Technical Paper

Research on Heat Dissipation Performance of Automobile Motor Based on Heat Pipe Optimization Design

2022-03-29
2022-01-0729
In new energy vehicles, the electric motor, as the main power source, is developing toward high power density. However, its heat generation problem always affects the overall performance of the motor, so an efficient motor cooling system is especially important. In desert or water-scarce areas, liquid cooling cannot meet the needs of new energy vehicle motor cooling. When glycol or other liquid coolants are low or depleted, motor heat dissipation becomes less effective. Heat pipe is a heat dissipation technology with advantages such as fast thermal response and light weight. In this paper, by improving the heat pipe arrangement and reducing the overall mass of the heat dissipation system, a heat pipe optimization design based on a drive motor heat dissipation scheme is proposed, and the overall stability of the motor working under high temperature conditions is improved.
Technical Paper

PHEV Energy Management Optimization Based on Multi-Island Genetic Algorithm

2022-03-29
2022-01-0739
The plug-in hybrid electric vehicle (PHEV) gradually moves into the mainstream market with its excellent power and energy consumption control, and has become the research target of many researchers. The energy management strategy of plug-in hybrid vehicles is more complicated than conventional gasoline vehicles. Therefore, there are still many problems to be solved in terms of power source distribution and energy saving and emission reduction. This research proposes a new solution and realizes it through simulation optimization, which improves the energy consumption and emission problems of PHEV to a certain extent. First, on the basis that MATLAB software has completed the modeling of the key components of the vehicle, the fuzzy controller of the vehicle is established considering the principle of the joint control of the engine and the electric motor.
Technical Paper

Analytical Modeling and Multi-Objective Optimization of the Articulated Vehicle Steering System

2022-03-29
2022-01-0879
The articulated steering system is widely used in engineering vehicles due to its high mobility and low steering radius. The design parameters have a vital impact on the selection of the steering system assemblies, such as the operation stroke, pressure, and force of the hydraulic cylinders during the steering process, which will affect the system weight. The system energy consumption is also relevant to the geometry parameters. According to the kinetic analysis of the steering system and dynamic analysis of the steering process, the kinetic model of an engineering vehicle steering system is built, and the length and pressure variation of the cylinder is calculated and validated by the field test. The influence of the factors is analyzed based on the established model. To lower the system weight, needed pressure, and force, the multi-objective particle swarm optimization method is initiated to optimize the geometry parameter of the articulated steering system.
Technical Paper

On the Effect of Low-Viscosity Oil on Automobile Pollutant Emissions Based on Worldwide Harmonized Light Vehicles Test Cycle

2021-09-10
2021-01-5087
In order to study the influence of low-viscosity oil on automobile pollutant emissions reduction, three different 0W20 oil samples were prepared with oil 5W30 as the base oil. Parameters such as the oil viscosity, ash, and element content were tested at different stages, speeds, and accelerations of the Worldwide Harmonized Light Vehicles Test Cycle (WLTC). The results showed the effects of low-viscosity oil on exhaust emissions reduction were mainly concentrated in the low-speed and extra high-speed segment. At the low-speed segment, especially in the starting stage, carbon monoxide (CO), total hydrocarbon (THC), and non-methane hydrocarbon (NMHC) emissions can be reduced. The use of low ash oil can reduce nitrogen oxides (NOx) emissions; the methane (CH4) emissions can be reduced by increasing the Zinc (Zn) content in engine oil moderately.
Technical Paper

Parameter Optimization of Off-Road Vehicle Frame Based on Sensitivity Analysis, Radial Basis Function Neural Network, and Elitist Non-dominated Sorting Genetic Algorithm

2021-08-10
2021-01-5082
The lightweight design of a vehicle can save manufacturing costs and reduce greenhouse gas emissions. For the off-road vehicle and truck, the chassis frame is the most important load-bearing assembly of the separate frame construction vehicle. The frame is one of the most assemblies with great potential to be lightweight optimized. However, most of the vehicle components are mounted on the frame, such as the engine, transmission, suspension, steering system, radiator, and vehicle body. Therefore, boundaries and constraints should be taken into consideration during the optimal process. The finite element (FE) model is widely used to simulate and assess the frame performance. The performance of the frame is determined by the design parameters. As one of the largest components of the vehicle, it has a lot of parameters. To improve the optimum efficiency, sensitivity analysis is used to narrow the range of the variables.
Technical Paper

Vehicle Accelerator and Brake Pedal On-Off State Judgment by Using Speed Recognition

2021-04-16
2021-01-5038
The development of intelligent transportation improves road efficiency, reduces automobile energy consumption, and improves driving safety. The core of intelligent transportation is the two-way information interaction between vehicles and the road environment. At present, road environmental information can flow to the vehicle, while the vehicle’s information rarely flows to the outside world. The electronic throttle and electronic braking systems of some vehicles use sensors to get the state of the accelerator and brake pedal, which can be transmitted to the outside environment through technologies such as the Internet of Vehicles. But the Internet of Vehicles technology has not been widely used, and it relies on signal sources, which is a passive way of information acquisition. In this paper, an active identification method is proposed to get the vehicle pedal on-off state as well as the driver’s operation behavior through existing traffic facilities.
Technical Paper

Research on Braking Safety of Parallel Hybrid Electric Buses on Long Downhill Based on Gradient and Speed Change

2021-04-06
2021-01-0973
When driving in mountainous areas, vehicles often encounter long downhill sections. Due to the large mass of bus and the drum brake with poor heat dissipation effect, it is easy for bus to produce braking thermal decay in long downhill section, which makes the vehicle out of control and causes safety accidents. The braking methods of parallel hybrid electric bus include drum braking, engine braking and regenerative braking, whose torque models are established in this paper. The coasting test in Trucksim is used to verify the correctness of the engine braking torque model. Based on coupling braking torque curve with vehicle speed in different gradient, the stable speed is determined and the shift strategy is proposed. The temperature rise model of brake drum is established to analyze the temperature change of brake drum during long downhill. Then, according to the ramp data of G22 freeway, the above models are simulated.
Technical Paper

The Driving Planning of Pure Electric Commercial Vehicles on Curved Slope Road in Mountainous Area Based on Vehicle-Road Collaboration

2021-04-06
2021-01-0174
The mountain roads are curved and complicated, with undulating terrain and large distance between charging stations. Compared with traditional powered vehicles, in addition to safety issues, pure electric vehicles also need to deal with the driving range issue. At present, the relevant researches on automobile driving in mountainous areas mainly focus on the driving safety of traditional fuel oil vehicles when going uphill and downhill, while there are few researches on the driving planning of pure electric commercial vehicles on curved slope road. This paper presents a speed planning method for pure electric commercial vehicles based on vehicle-road collaboration technology. First, establish the vehicle dynamics model, analyze the vehicle dynamics characteristics when passing the downhill curve, calculate the safe speed range of the vehicle when passing the downhill curve, and establish the safe speed model of the downhill curve.
Technical Paper

Modeling Ventilation System for Minimizing Temperature Amount of the Heat on the Contact Surface of the Brake Disc

2021-04-06
2021-01-0295
When driving a vehicle, reliable braking system ensures maximum human safety. Increasing vehicle speed under driving conditions generate heat due to the friction between rotating disc and pads. Elevated temperatures accelerate brake disc contact surface thermal deformation and shortens the service life. The particles formed as a result of high temperature and friction coefficient on the contact surface of the brake disc must not be emitted into the atmosphere. The ventilation system ensures that particles do not escape into the atmosphere by installing a car air filter system in the outdoor air flow duct. Minimizing the amount of heat and temperature on the contact surface of the brake disc in the ventilation system leads to an increase in the service life of the brake disc. The present research is essentially dealing with the modeling and analysis of solid and ventilated disc brake using ventilation system test rig.
Technical Paper

Research on Parallel Regenerative Braking Control of the Electric Commercial Vehicle Based on Fuzzy Logic

2021-04-06
2021-01-0119
Regenerative braking is an effective technology to extend the driving range of electrified vehicles by recovering kinetic energy from braking. This paper focuses on the design of the regenerative braking control strategy for a commercial vehicle which requires significantly larger braking power than passenger cars. To maximize the energy recovery while ensuring the braking efficiency of the vehicle and its braking safety, this paper proposed a fuzzy logic strategy for regenerative braking control, and a feasibility study was conducted for an electric van. The work includes in three steps. Firstly, state variables that significantly affect regenerative braking performance, i.e., vehicle speed, battery State-of-Charge (SOC), and braking intensity, are identified based on mathematical modelling of the vehicle system dynamics in braking maneuver.
Technical Paper

Pre-Curve Braking Planning of Battery Electric Vehicle Based on Vehicle Infrastructure Cooperative System

2020-10-05
2020-01-1643
Braking energy recovery is an important method for Battery Electric Vehicle (BEV) to save energy and increase driving range. The vehicle braking system performs regenerative braking control based on driver operations. Different braking operations have a significant impact on energy recovery efficiency. This paper proposes a method for planning the braking process of a BEV based on the Intelligent Vehicle Infrastructure Cooperative System (IVICS). By actively planning the braking process, the braking energy recovery efficiency is improved. Vehicles need to decelerate and brake before entering a curve. The IVICS is used to obtain information about the curve section ahead of the vehicle's driving route. Then calculating the reference speed of the curve, and obtaining the vehicle's braking target in advance, so as to actively plan the vehicle braking process.
X