Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Lightweight Design of Integrated Hub and Spoke for Formula Student Racing Car

2024-04-09
2024-01-2080
In the racing world, speed is everything, and the Formula Student cars are no different. As one of the key means to improve the speed of the car, lightweight plays an important role in the racing world. The weight reduction of unsprung metal parts can not only improve the driving speed, but also effectively optimize the dynamic of the car, so the lightweight design of unsprung parts has attracted much attention. In the traditional Formula Student racing car, the hub and spoke are two independent parts, they are fixed by four hub bolts or a central locking nut, the material of these fasteners is usually steel, so it brings a lot of weight burden. In order to achieve unsprung lightweight, a new type of wheel part design of Formula Student racing car is proposed in this paper. The hub and spoke are designed as integrated aluminum alloy parts, effectively eliminating the mass of hub bolts or central locking nuts.
Technical Paper

Fuzzy Control of Regenerative Braking on Pure Electric Garbage Truck Based on Particle Swarm Optimization

2024-04-09
2024-01-2145
To improve the braking energy recovery rate of pure electric garbage removal vehicles and ensure the braking effect of garbage removal vehicles, a strategy using particle swarm algorithm to optimize the regenerative braking fuzzy control of garbage removal vehicles is proposed. A multi-section front and rear wheel braking force distribution curve is designed considering the braking effect and braking energy recovery. A hierarchical regenerative braking fuzzy control strategy is established based on the braking force and braking intensity required by the vehicle. The first layer is based on the braking force required by the vehicle, based on the front and rear axle braking force distribution plan, and uses fuzzy controllers.
Technical Paper

Research on the Harmonics-Based the Optimization Algorithm for the Active Synthesis of Automobile Sound

2023-05-08
2023-01-1045
The technology of active sound generation (ASG) for automobiles is one of the most effective methods to flexibly achieve the sound design that meets the expectations of different user groups, and the active sound synthesis algorithms are crucial for the implementation of ASG. In this paper, the Kaiser window function-based the harmonic synthesis algorithm of automobile sound is proposed to achieve the extraction of the order sounds of target automobile. And, the suitable fitting functions are utilized to construct the mathematical model between the engine speed information and the amplitude of the different order sound. Then, a random phase correction algorithm is proposed to ensure the coherence of the synthesized sounds. Finally, the analysis of simulation results verifies that the established method of the extraction and synthesis of order sound can meet the requirements of target sound quality.
Technical Paper

Path Planning and Tracking Control of Car-like Robot Based on Improved NSGA-III and Fuzzy Sliding Mode Control

2023-04-11
2023-01-0681
In recent years, research on car-like robots has received more attention due to the rapid development of artificial intelligence from diverse disciplines. As essential parts, path planning and lateral path tracking control are the basis for car-like robots to complete automation tasks. Based on the two-degree-of-freedom vehicle dynamic model, this study profoundly analyzes the car-like robots’ path planning and lateral path tracking control. Three objectives: path length, path smoothness, and path safety, are defined and used to construct a multi-objective path planning model. By introducing an adaptive factor, redefining the selection of reference points, and using the cubic spline interpolation for path determination, an improved NGSA-III is proposed, which is mostly adapted in solving the multi-objective path planning problem.
Technical Paper

A Semantic Segmentation Algorithm for Intelligent Sweeper Vehicle Garbage Recognition Based on Improved U-net

2023-04-11
2023-01-0745
Intelligent sweeper vehicle is gradually applied to human life, in which the accuracy of garbage identification and classification can improve cleaning efficiency and save labor cost. Although Deep Learning has made significant progress in computer vision and the application of semantic network segmentation can improve waste identification rate and classification accuracy. Due to the loss of some spatial information during the convolution process, coupled with the lack of specific datasets for garbage identification, the training of the network and the improvement of recognition and classification accuracy are affected. Based on the Unet algorithm, in this paper we adjust the number of input and output channels in the convolutional layer to improve the speed during the feature extraction part. In addition, manually generated datasets are used to greatly improve the robustness of the model.
Technical Paper

Research on Regenerative Braking Control Strategy of Commercial Vehicles Considering Battery Power Status

2023-04-11
2023-01-0536
Regenerative braking is an effective way to increase the cruising range of vehicles. In commercial vehicles with large vehicle mass, regenerative braking can be maintained in a high-power working state for a long time theoretically because of the large braking torque and long braking time. But in fact, it is often impossible to run at full power because of battery safety problems. In this paper, a control strategy is designed to maintain the maximum power operation of regenerative braking as much as possible. The maximum charging power of the battery is obtained through the battery model, and it is set as the battery limiting parameter. The regenerative braking torque and power are obtained by using the motor model. The eddy current retarder is used to absorb the excess power that the battery can't bear, and the braking torque of the eddy current retarder is calculated. Finally, mechanical braking is used to make up the insufficient braking torque.
Technical Paper

LSTM-Based Trajectory Tracking Control for Autonomous Vehicles

2022-12-22
2022-01-7079
With the improvement of sensor accuracy, sensor data plays an increasingly important role in intelligent vehicle motion control. Good use of sensor data can improve the control of vehicles. However, data-based end-to-end control has the disadvantages of poorly interpreted control models and high time costs; model-based control methods often have difficulties designing high-fidelity vehicle controllers because of model errors and uncertainties in building vehicle dynamics models. In the face of high-speed steering conditions, vehicle control is difficult to ensure stability and safety. Therefore, this paper proposes a hybrid model and data-driven control method. Based on the vehicle state data and road information data provided by vehicle sensors, the method constructs a deep neural network based on LSTM and Attention, which is used as a compensator to solve the performance degradation of the LQR controller due to modeling errors.
Technical Paper

Research on Brake Pad Particle Emissions and Temperature Reduction of a Brake Disc in Air Controlling System

2022-03-29
2022-01-0330
This paper addresses the brake pad particle emission during the braking process of a vehicle in motion. The frictional-constant contact between the disc brake and pads results in an increased temperature and wear of the pads. The emission of brake pad particles into the atmosphere leads to an increase in air pollution and hence becomes hazardous to the human body. In this paper, a wheel brake disc is installed in a ventilation system where the specific air flow is introduced in order to investigate the thermal performance and the emission of particles from the brake pads. A mathematical model using the fundamental parameters of the brake disc and ventilation system is established. The behavior of the heat transfer is studied using computational fluid dynamics (CFD). The particle emission rate from the pads is calculated under the assumption of uniform constant pressure distribution at the contact surface of the brake disc and pad.
Technical Paper

Research on Dust Suppression of Dump Truck

2022-03-29
2022-01-0786
When dump trucks unload dusty materials, dust particles with a diameter of 1 to 75 microns slide out of the dump body and float into the air. Dust particles naturally settle down spending a few hours, which causes air pollution. People who work in this environment daily suffer serious physical harm. To study the movement of dust particles during the unloading process, a scaled-down model is used to simulate the process of dump truck unloading gravel, and a high frame rate camera is used to record the movement trajectory of dust particles during the unloading process. In this paper, by observing the movement process of unloading dust particles by dump trucks, based on the principle of dynamics, a mathematical model describing the unloading of dust particles in the dump body and a mathematical model of the diffusion of dust particles in the air are established. Take the small gravel sampled at the construction site as an example of the experiment.
Technical Paper

PHEV Energy Management Optimization Based on Multi-Island Genetic Algorithm

2022-03-29
2022-01-0739
The plug-in hybrid electric vehicle (PHEV) gradually moves into the mainstream market with its excellent power and energy consumption control, and has become the research target of many researchers. The energy management strategy of plug-in hybrid vehicles is more complicated than conventional gasoline vehicles. Therefore, there are still many problems to be solved in terms of power source distribution and energy saving and emission reduction. This research proposes a new solution and realizes it through simulation optimization, which improves the energy consumption and emission problems of PHEV to a certain extent. First, on the basis that MATLAB software has completed the modeling of the key components of the vehicle, the fuzzy controller of the vehicle is established considering the principle of the joint control of the engine and the electric motor.
Technical Paper

Research on the Dual-Motor Coupling Power System Strategy of Electric Sweeping Vehicle

2022-03-29
2022-01-0673
The sweeping vehicle has made a great contribution to the cleaning of urban roads. The traditional electric sweeping vehicle uses the main and auxiliary motors to drive the driving system and the operating system respectively. However, because the sweeper is in a low-speed working condition for a long time, and the drive motor must meet the demand for high power, there exist problems of low motor utilization and high cost. Aiming at this phenomenon, a dual-motor power coupling system based on planetary gears is proposed. First, analyze the driving mode of the dual-motor coupling power system according to the actual working scheme of the sweeper, and match the parameters of the motor based on this. Second, on the premise of meeting the power requirements, analyze and divide the working range of each drive mode based on the principle of minimum energy consumption, and then obtain the best drive mode switching control and speed and torque distribution strategy.
Technical Paper

Tooth Profile Modification Analysis of Fine-Pitch Planetary Gears for High-Speed Electric Drive Axles Based on KISSsoft

2021-12-31
2021-01-7016
According to the requirements of high transmission ratio and high load torque of high-speed electric drive axle planetary gear system, the design and analysis of fine-pitch planetary gear system with small modulus, small pressure angle and high full tooth height of are carried out. In order to improve the bearing capacity of gear and reduce gear meshing noise, the tooth profile modification parameters of gear system are optimized. In this paper, the tooth modification methods are analyzed and the gear train parameters are determined. The influence degree of different tooth modification methods on the transmission performance of the gear train is determined by orthogonal experiment method. The transmission error is reduced, the stress fluctuation is improved, and the gear meshing performance is greatly improved by adopting the appropriate modification scheme, which proves the effectiveness of the tooth modification scheme.
Technical Paper

On the Effect of Low-Viscosity Oil on Automobile Pollutant Emissions Based on Worldwide Harmonized Light Vehicles Test Cycle

2021-09-10
2021-01-5087
In order to study the influence of low-viscosity oil on automobile pollutant emissions reduction, three different 0W20 oil samples were prepared with oil 5W30 as the base oil. Parameters such as the oil viscosity, ash, and element content were tested at different stages, speeds, and accelerations of the Worldwide Harmonized Light Vehicles Test Cycle (WLTC). The results showed the effects of low-viscosity oil on exhaust emissions reduction were mainly concentrated in the low-speed and extra high-speed segment. At the low-speed segment, especially in the starting stage, carbon monoxide (CO), total hydrocarbon (THC), and non-methane hydrocarbon (NMHC) emissions can be reduced. The use of low ash oil can reduce nitrogen oxides (NOx) emissions; the methane (CH4) emissions can be reduced by increasing the Zinc (Zn) content in engine oil moderately.
Technical Paper

Parameter Optimization of Off-Road Vehicle Frame Based on Sensitivity Analysis, Radial Basis Function Neural Network, and Elitist Non-dominated Sorting Genetic Algorithm

2021-08-10
2021-01-5082
The lightweight design of a vehicle can save manufacturing costs and reduce greenhouse gas emissions. For the off-road vehicle and truck, the chassis frame is the most important load-bearing assembly of the separate frame construction vehicle. The frame is one of the most assemblies with great potential to be lightweight optimized. However, most of the vehicle components are mounted on the frame, such as the engine, transmission, suspension, steering system, radiator, and vehicle body. Therefore, boundaries and constraints should be taken into consideration during the optimal process. The finite element (FE) model is widely used to simulate and assess the frame performance. The performance of the frame is determined by the design parameters. As one of the largest components of the vehicle, it has a lot of parameters. To improve the optimum efficiency, sensitivity analysis is used to narrow the range of the variables.
Technical Paper

Vehicle Accelerator and Brake Pedal On-Off State Judgment by Using Speed Recognition

2021-04-16
2021-01-5038
The development of intelligent transportation improves road efficiency, reduces automobile energy consumption, and improves driving safety. The core of intelligent transportation is the two-way information interaction between vehicles and the road environment. At present, road environmental information can flow to the vehicle, while the vehicle’s information rarely flows to the outside world. The electronic throttle and electronic braking systems of some vehicles use sensors to get the state of the accelerator and brake pedal, which can be transmitted to the outside environment through technologies such as the Internet of Vehicles. But the Internet of Vehicles technology has not been widely used, and it relies on signal sources, which is a passive way of information acquisition. In this paper, an active identification method is proposed to get the vehicle pedal on-off state as well as the driver’s operation behavior through existing traffic facilities.
Technical Paper

Research on Braking Safety of Parallel Hybrid Electric Buses on Long Downhill Based on Gradient and Speed Change

2021-04-06
2021-01-0973
When driving in mountainous areas, vehicles often encounter long downhill sections. Due to the large mass of bus and the drum brake with poor heat dissipation effect, it is easy for bus to produce braking thermal decay in long downhill section, which makes the vehicle out of control and causes safety accidents. The braking methods of parallel hybrid electric bus include drum braking, engine braking and regenerative braking, whose torque models are established in this paper. The coasting test in Trucksim is used to verify the correctness of the engine braking torque model. Based on coupling braking torque curve with vehicle speed in different gradient, the stable speed is determined and the shift strategy is proposed. The temperature rise model of brake drum is established to analyze the temperature change of brake drum during long downhill. Then, according to the ramp data of G22 freeway, the above models are simulated.
Technical Paper

The Driving Planning of Pure Electric Commercial Vehicles on Curved Slope Road in Mountainous Area Based on Vehicle-Road Collaboration

2021-04-06
2021-01-0174
The mountain roads are curved and complicated, with undulating terrain and large distance between charging stations. Compared with traditional powered vehicles, in addition to safety issues, pure electric vehicles also need to deal with the driving range issue. At present, the relevant researches on automobile driving in mountainous areas mainly focus on the driving safety of traditional fuel oil vehicles when going uphill and downhill, while there are few researches on the driving planning of pure electric commercial vehicles on curved slope road. This paper presents a speed planning method for pure electric commercial vehicles based on vehicle-road collaboration technology. First, establish the vehicle dynamics model, analyze the vehicle dynamics characteristics when passing the downhill curve, calculate the safe speed range of the vehicle when passing the downhill curve, and establish the safe speed model of the downhill curve.
Technical Paper

Research on Parallel Regenerative Braking Control of the Electric Commercial Vehicle Based on Fuzzy Logic

2021-04-06
2021-01-0119
Regenerative braking is an effective technology to extend the driving range of electrified vehicles by recovering kinetic energy from braking. This paper focuses on the design of the regenerative braking control strategy for a commercial vehicle which requires significantly larger braking power than passenger cars. To maximize the energy recovery while ensuring the braking efficiency of the vehicle and its braking safety, this paper proposed a fuzzy logic strategy for regenerative braking control, and a feasibility study was conducted for an electric van. The work includes in three steps. Firstly, state variables that significantly affect regenerative braking performance, i.e., vehicle speed, battery State-of-Charge (SOC), and braking intensity, are identified based on mathematical modelling of the vehicle system dynamics in braking maneuver.
Journal Article

Detection & Tracking of Multi-Scenic Lane Based on Segnet-LSTM Semantic Split Network

2021-04-06
2021-01-0083
Lane detection is an important component in automatic pilot system and advanced driving assistance system (ADAS). The stability and precision of lane detection will directly determine precision of control and lane plan of vehicles. Traditional mechanical vision lane detection approaches in complicated environment have the deficiencies of low precision and feature semantic description disabilities. But the lane detection depending on deep learning, e.g. SCNN network, LaneNet network, ENet-SAD network have imbalance problems of splitting precision and storage usage. This paper proposes an approach of high-efficiency deep learning Segnet-LSTM semantic segmentation network. This network structure is composed with encoding network and corresponding decoding networks. First, convolution and maximum pooling. The proposal extracts texture details of five images and stores searching position of maximum pooling. Meanwhile, it will implement interpolate processing to the lost points.
X