Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Statistical Energy Analysis Applications for Structureborne Vehicle NVH

2010-10-17
2010-36-0526
Statistical Energy Analysis (SEA) is an established high-frequency analysis technique for generating acoustic and vibration response predictions in the automotive, aerospace, machinery, and ship industries. SEA offers unique NVH prediction and target-setting capabilities as a design tool at early stages of vehicle design where geometry is still undefined and evolving and no prototype hardware is available yet for testing. The exact frequencies at which SEA can be used effectively vary according to the size and the amount of damping in the vehicle subsystems; however, for automotive design the ability to predict acoustic and vibration responses due to both airborne and structure-borne sources has been established to frequencies of 500 Hz and above. This paper presents the background, historical use, and current industrial applications of structure-borne SEA. The history and motivation for the development of structure-borne SEA are discussed.
Technical Paper

SEA Model Development Considerations for Cost-Driven or Developing Market Vehicles

2007-05-15
2007-01-2308
In South America and other developing markets the NVH development of a vehicle is often limited by the cost of the sound package components. In an era where cost reduction is crucial not only in developing markets, but also in developed markets where any cost or weight savings is a large competitive advantage, lessons learned from considerations for NVH analysis for vehicle design in developing markets can be applied to vehicle NVH design everywhere. A Statistical Energy Analysis (SEA) model was used to target and identify the dominant paths in need of sound package modifications to decrease the over sound pressure levels and also to identify paths in which sound package (and cost) could be reduced or deleted with no discernable degradation to the overall interior levels. This model will be used to support or challenge ongoing proposed sound package modifications to the vehicle and serve as a baseline template for design phase work for other vehicles of a similar body style.
X