Refine Your Search

Topic

Author

Search Results

Journal Article

Experimental and Numerical Study on the Effect of Nitric Oxide on Autoignition and Knock in a Direct-Injection Spark-Ignition Engine

2022-08-30
2022-01-1005
Nitric Oxide (NO) can significantly influence the autoignition reactivity and this can affect knock limits in conventional stoichiometric SI engines. Previous studies also revealed that the role of NO changes with fuel type. Fuels with high RON (Research Octane Number) and high Octane Sensitivity (S = RON - MON (Motor Octane Number)) exhibited monotonically retarding knock-limited combustion phasing (KL-CA50) with increasing NO. In contrast, for a high-RON, low-S fuel, the addition of NO initially resulted in a strongly retarded KL-CA50 but beyond the certain amount of NO, KL-CA50 advanced again. The current study focuses on same high-RON, low-S Alkylate fuel to better understand the mechanisms responsible for the reversal in the effect of NO on KL-CA50 beyond a certain amount of NO.
Technical Paper

Effect of Aero Covers on Underfloor Wind Noise; Conclusions from a Wind Tunnel Validated Aero-Vibro-Acoustic Model

2022-03-29
2022-01-0310
Low frequency interior wind noise is typically dominated by underfloor flow noise. The source mechanisms are fluctuating surface pressure loading from both flow turbulence and acoustic field levels developed in the semi-reverberant cavity between floor and road. Previous studies have used computation fluid dynamics (CFD) to estimate the aero-acoustic loading applied to a vibro-acoustic model, which is then used to predict the transmitted interior wind noise. This paper reports a new perspective in two respects. First it uses novel surface pressure microphone arrays to directly measure the underfloor aero-acoustic loading in the wind tunnel. Second, it considers two different underfloor aerodynamic configurations - with and without lightweight aero cover panels, which are installed primarily to reduce aerodynamic drag.
Technical Paper

A Study of Triple Skyhook Control for Semi-Active Suspension System

2019-04-02
2019-01-0168
The research described in this paper focused on improving occupant ride comfort and road holding by suppressing sprung and unsprung vibration using a semi-active suspension system. It has been reported that occupants tend to perceive vertical vibrations in a frequency range between 4 and 8 Hz as uncomfortable (described below as the “mid-frequency range”). Previous research into semi-active suspension system has focused on reducing vibration in this mid-frequency range, as well as close to the sprung resonance frequency of between 1 and 2 Hz. Skyhook damper (SH) control is a typical ride comfort control used to damp vibration close to the sprung resonance frequency. However, since SH control is not capable of damping vibration in the mid-frequency range, the shock absorbers are configured with a lower damping factor. This helps to achieve a good balance between reducing vibration close to the sprung mass resonance and in the mid-frequency range.
Journal Article

Rubber Suspension Bushing Model Identified by General Design Parameters for Initial Design Phase

2018-04-03
2018-01-0693
This article proposes a rubber suspension bushing model considering amplitude dependence as a useful tool at the initial design phase. The purpose of this study is not to express physical phenomena accurately and in detail and to explore the truth academically, but to provide a useful design method for initial design phase. Experiments were carried out to verify several dynamic characteristics of rubber bushings under vibration up to a frequency of 100 Hz, which is an important frequency range when designing ride comfort performance. When dynamic characteristic theory and the geometrical properties of the force-displacement characteristic curve were considered using these dynamic characteristics as assumptions, an equation was derived that is capable of calculating the dynamic stiffness under an arbitrary amplitude by identifying only two general design parameters (dynamic stiffness and loss factor) under a reference amplitude.
Journal Article

Development of Engine Lubrication System with New Internal Gear Fully Variable Discharge Oil Pump

2017-10-08
2017-01-2431
Over the past decades, the automotive industry has made significant efforts to improve engine fuel economy by reducing mechanical friction. Reducing friction under cold conditions is becoming more important in hybrid vehicle (HV) and plug-in hybrid vehicle (PHV) systems due to the lower oil temperatures of these systems, which results in higher friction loss. To help resolve this issue, a new internal gear fully variable discharge oil pump (F-VDOP) was developed. This new oil pump can control the oil pressure freely over a temperature range from -10°C to hot conditions. At 20°C, this pump lowers the minimum main gallery pressure to 100 kPa, thereby achieving a friction reduction effect of 1.4 Nm. The developed oil pump achieves a pressure response time constant of 0.17 seconds when changing the oil pressure from 120 kPa to 200 kPa at a temperature of 20°C and an engine speed of 1,600 rpm.
Technical Paper

Optimizing Transmission Loss for Lightweight Body Structures

2017-06-05
2017-01-1812
In an effort to reduce mass, future automotive bodies will feature lower gage steel or lighter weight materials such as aluminum. An unfortunate side effect of lighter weight bodies is a reduction in sound transmission loss (TL). For barrier based systems, as the total system mass (including the sheet metal, decoupler, and barrier) goes down the transmission loss is reduced. If the reduced surface density from the sheet metal is added to the barrier, however, performance can be restored (though, of course, this eliminates the mass savings). In fact, if all of the saved mass from the sheet metal is added to the barrier, the TL performance may be improved over the original system. This is because the optimum performance for a barrier based system is achieved when the sheet metal and the barrier have equal surface densities. That is not the case for standard steel constructions where the surface density of the sheet metal is higher than the barrier.
Journal Article

Improvement of Ride Comfort by Unsprung Negative Skyhook Damper Control Using In-Wheel Motors

2016-04-05
2016-01-1678
Vehicles equipped with in-wheel motors (IWMs) are capable of independent control of the driving force at each wheel. These vehicles can also control the motion of the sprung mass by driving force distribution using the suspension reaction force generated by IWM drive. However, one disadvantage of IWMs is an increase in unsprung mass. This has the effect of increasing vibrations in the 4 to 8 Hz range, which is reported to be uncomfortable to vehicle occupants, thereby reducing ride comfort. This research aimed to improve ride comfort through driving force control. Skyhook damper control is a typical ride comfort control method. Although this control is generally capable of reducing vibration around the resonance frequency of the sprung mass, it also has the trade-off effect of worsening vibration in the targeted mid-frequency 4 to 8 Hz range. This research aimed to improve mid-frequency vibration by identifying the cause of this adverse effect through the equations of motion.
Journal Article

Analysis of Influence of Snow Melting Agents and Soil Components on Corrosion of Decorative Chrome Plating

2016-04-05
2016-01-0539
The dissolution and exfoliation of chromium plating specific to Russia was studied. Investigation and analysis of organic compounds in Russian soil revealed contents of highly concentrated fulvic acid. Additionally, it was found that fulvic acid, together with CaCl2 (a deicing agent), causes chromium plating corrosion. The fulvic acid generates a compound that prevents reformation of a passivation film and deteriorates the sacrificial corrosion effectiveness of nickel.
Technical Paper

Reduction of Longitudinal Vehicle Vibration Using In-Wheel Motors

2016-04-05
2016-01-1668
This study analyzed the longitudinal vibration of a vehicle body and unsprung mass. Calculations and tests verified that longitudinal vibration can be reduced using in-wheel motors, which generate torque very quickly. Despite increasing demand for measures to enhance ride comfort considering longitudinal vibration, this type of vibration cannot be absorbed or controlled using a conventional suspension. This paper describes the reduction of vehicle longitudinal vibration that cannot be controlled by conventional actuators.
Technical Paper

Improvement of Adhesion Properties between Epoxy Resin and Primer and between Primer and Ni Plating in Hybrid Vehicle Power Semiconductor Module under High Temperature Conditions

2016-04-05
2016-01-0500
In this report, adhesion mechanism between epoxy resin and primer and between primer and Ni platting in Hybrid vehicle (HV) was investigated. Adhesion forces are thought to be a combination of mechanical bond forces (such as anchor effect), chemical bond forces and physical bond forces (such as hydrogen bonding and Van der Waals force). Currently there is insufficient understanding of the adhesion mechanism. In particular, the extent to which the three bond forces contribute to adhesion strength. So the adhesion mechanism of polyimide primers was analyzed using a number of different methods, including transmission electron microscope (TEM) and atomic force microscope (AFM) observation, to determine the contributions of the three bonding forces. Molecular simulation was also used to investigate the relationship between adhesion strength and the molecular structure of the primer.
Technical Paper

Development of a Lightweight Soundproof Cover Using the Biot Theory (Vibration Propagation in Elastic Porous Materials), and an Example Application to a Transmission

2016-04-05
2016-01-0517
To reduce cabin noise and vehicle weight (for lower fuel consumption), a lightweight soundproofing cover was developed as a countermeasure to sources of noise, using the Biot theory (vibration propagation theory in poroelastic materials). This report also presents the results of its application to a metal belt-type continuously variable transmission (CVT) used in Toyota Motor Corporation’s 2.0L vehicles.
Journal Article

Multiplex Communication Protocol for Switch/Sensor/Actuator Network: “CXPI”

2016-04-05
2016-01-0057
The growing functionality and complexity of recent vehicle electronic systems have made inter-device communication (on-board LAN) technology vital to vehicle design. By field of application, the LAN (Local Area Network) systems currently in use are LIN (Local Interconnect Network) used for body systems, CAN (Controller Area Network) used for control systems, and MOST (Media Oriented Systems Transport ) used for multimedia and camera systems, and work to standardize the next-generation communication technology for each of those fields is underway. This paper provides a technical overview of the CXPI (Clock Extension Peripheral Interface) communication protocol, which satisfies the body system requirements (rapid response, system extensibility, high reliability, and low cost). It also presents the progress made on standardization at SAE and other organizations.
Technical Paper

A Study of Reduction for Brake Squeal in Disc In-Plane Mode

2012-09-17
2012-01-1825
Brake squeal is a phenomenon of self-induced vibration of the brake components during braking. There are many kinds of brake squeal cases whose mechanisms require acting on a various number of potential root causes. Brake squeal phenomena can be generally separated into 2 main mode types related to the direction of disc vibration involved: in-plane mode and out-of-plane mode. For out-of-plane mode, a number of existing countermeasures can be potentially applied after characterization of the squeal occurrence condition by direct experiment or simulation analysis[1,2,3,4]. However, as there are many possible mechanisms and root causes for the in-plane modes[5,6,7,8,9,10,11,12,13], it is generally necessary to perform a detailed analysis of the vibration mechanism before implementing a countermeasure.
Technical Paper

Development of Side Impact Dummy FE Models using Reverse Engineering

2012-04-16
2012-01-0091
This paper describes the development of dummy FE models to be used for side impact simulations. The precise geometries of the ES-2re dummy and the SID-IIs dummy were measured at a pitch of 1.0 mm using X-ray CT scan. The material properties and the mechanical responses of the components were measured in static and dynamic tests and were used for the model validation. The models were further validated to US-NCAP side impact requirements. Good correlation was seen for both response time history, and to peak deformation values. It is shown that modeling the precise dummy internal structure in addition to the external geometry and applying accurate material properties enabled simulation of deformation kinematics and load transfer inside the dummies. As a result, it was possible to accurately simulate the injury value time histories in an actual test, and understand the mechanisms causing changes to the loading.
Technical Paper

Vehicle Interior Noise and Vibration Reduction Method Using Transfer Function of Body Structure

2011-05-17
2011-01-1692
To reduce interior noise effectively in the vehicle body structure development process, noise and vibration engineers have to first identify the portions of the body that have high sensitivity. Second, the necessary vibration characteristics of each portion must be determined, and third, the appropriate body structure for achieving the target performance of the vehicle must be realized within a short development timeframe. This paper proposes a new method based on the substructure synthesis method which is effective up to 200Hz. This method primarily utilizes equations expressing the relationship between driving point inertance change at arbitrary body portions and the corresponding sound pressure level (SPL) variation at the occupant's ear positions under external force. A modified system equation was derived from the body transfer functions and equation of motion by adding a virtual dynamic stiffness expression into the dynamic stiffness matrix of the vehicle.
Technical Paper

A Study of Mixed-FAME and Trace Component Effects on the Filter Blocking Propensity of FAME and FAME Blends

2010-10-25
2010-01-2116
Previous studies have investigated the impacts of biofuel usage on the performance, drivability and durability of modern diesel engines and exhaust after-treatment systems including test work with different types, concentrations and mixtures of bio fuel components. During this earlier work vehicle fuel filter blocking issues were encountered during a field trial using various types of EN 14214 compliant Fatty Acid Methyl Ester (FAME) blended into EN 590 diesel. This paper summarises a subsequent literature review that was carried out looking into potential causes of this filter blocking and further work that was then carried out to expand on the findings. From this, a laboratory study was carried out to assess the increase in fuel filter blocking tendency (FBT) when various FAMEs from mixed sources were blended into EN 590 diesel at different concentrations, including levels above those currently allowed in the European market.
Technical Paper

V6-SUV Engine Sound Development

2009-05-19
2009-01-2177
This paper describes the development and achievement of a target engine sound for a V6 SUV in consideration of the sound quality preferences of customers in the U.S. First, a simple definition for engine sound under acceleration was found using order arrangement, frequency balance, and linearity. These elements are the product of commonly used characteristics in conventional development and can be applied simply when setting component targets. The development focused on order arrangement as the most important of these elements, and sounds with and without integer orders were selected as target candidates. Next, subjective auditory evaluations were performed in the U.S. using digitally processed sounds and an evaluation panel comprising roughly 40 subjects. The target sound was determined after classifying the results of this evaluation using cluster analysis.
Journal Article

FEM System Development for Dynamic Response Analysis of Acoustic Trim

2009-05-19
2009-01-2213
The multilayer vehicle trim is well known for its effective influence upon noise and vibration characteristics not only in the high-frequency range but also in the low and mid-frequency ranges. FEM technologies which represent the accurate stiffness, mass and damping of trim parts such as the dash silencer and the floor carpet are essential in order to extend current body FEM capability to the road noise and the engine noise issues generated in the mid-frequency range. Conventional modeling methodologies such as local impedance and/or spring-mass modeling that express absorption and insulation properties of acoustic trim contain limitations in the mid-frequency range. There are few reliable FEM technologies to create practical vehicle models that represent the precise characteristics of the trim. In this paper, poroelastic modeling of acoustic multilayer trim was established by employing Biot theory.
Technical Paper

Analysis of Degradation Mechanism of Lead-Free Materials

2009-04-20
2009-01-0260
The use of lead-free (Pb-free) solder and plating in onboard electronic components has accelerated rapidly in recent years, but solutions have yet to be found for the issues of whisker generation in tin (Sn) plating and crack initiation in Pb-free solder, despite widespread research efforts. Analysis of the whisker generation mechanism has focused on internal energy levels and crystal orientation, and analysis of the crack initiation mechanism in Pb-free solder has examined changes in the grain boundaries of Sn crystals.
Technical Paper

Grammatical Evolution Based Tool for Predicting Multivariable Response Surface for Laser Lap Welding

2008-04-14
2008-01-1372
The problem of predicting the quality of weld is critical to manufacturing. A great deal of data is collected under multiple conditions to predict the quality. The data generated at Daimler Chrysler has been used to develop a model based on grammatical evolution. Grammatical Evolution Technique is based on Genetic Algorithms and generates rules from the data which fit the data. This paper describes the development of a software tool that enables the user to choose input variables such as the metal types of top and bottom layers and their thickness, intensity and speed of laser beam, to generate a three dimensional map showing weld quality. A 3D weld quality surface can be generated in response to any of the two input variables picked from the set of defining input parameters. This tool will enable the user to pick the right set of input conditions to get an optimal weld quality. The tool is developed in Matlab with Graphical User Interface for the ease of operation.
X