Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Effect of Driver's Behavior and Environmental Conditions on Thermal Management of Electric Vehicles

2020-04-14
2020-01-1382
Worldwide projections anticipate a fast-growing market share of the battery electric vehicles (BEVs) to meet stringent emissions regulations for global warming and climate change. One of the new challenges of BEVs is the effective and efficient thermal management of the BEV to minimize parasitic power consumption and to maximize driving range. Typically, the total efficiency of BEVs depends on the performance and power consumption of the thermal management system, which is highly affected by several factors, including driving environments (ambient temperature and traffic conditions) and driver's behavior (aggressiveness). Therefore, this paper investigates the influence of these factors on energy consumption by using a comprehensive BEV simulation integrated with a thermal management system model. The vehicle model was validated with experimental data, and a simulation study is performed by using the vehicle model over various traffic scenarios generated from a traffic simulator.
Technical Paper

Multi Attribute Balancing of NVH, Vehicle Energy Management and Drivability at Early Design Stage Using 1D System Simulation Model

2019-01-09
2019-26-0178
Improving fuel efficiency often affects NVH performance. Modifying a vehicle’s design in the latter stages of development to improve NVH performance is often costly. Therefore, to optimize the cost performance, a Multi-Attribute Balancing (MAB) approach should be employed in the early design phases. This paper proposes a solution based on a unified 1D system simulation model across different vehicle performance areas. In the scope of this paper the following attributes are studied: Fuel economy, Booming, Idle, Engine start and Drivability. The challenges to be solved by 1D simulation are the vehicle performance predictions, taking into account the computation time and accuracy. Early phase studies require a large number of scenarios to evaluate multiple possible parameter combinations employing a multi-attribute approach with a systematic tool to ease setup and evaluation according to the determined performance metrics.
Technical Paper

Augmented Reality for Improved Dealership User Experience

2017-03-28
2017-01-0278
The potential for Augmented Reality (AR) spans many domains. Among other applications, AR can improve the discovery and learning experience for users inspecting a particular item. This paper discusses the use of AR in the automotive context; particularly, on improving the user experience in a dealership show room. Visual augmentation, through a tablet computer or glasses allows users to take part in a self-guided tour in learning about the various features, details, and options associated with a vehicle. The same approach can be applied to other learning scenarios, such as training and maintenance assistance. We evaluated a set of AR Glasses and a general purpose tablet. A table-top showroom was developed demonstrating what the actual user experience would be like for a self-guided dealership tour using natural markers and three-dimensional content spatially registered to physical objects in the user’s field of view.
Technical Paper

Evaluation of a Stereo Visual Odometry Algorithm for Passenger Vehicle Navigation

2017-03-28
2017-01-0046
To reliably implement driver-assist features and ultimately self-driving cars, autonomous driving systems will likely rely on a variety of sensor types including GPS, RADAR, LASER range finders, and cameras. Cameras are an essential sensory component because they lend themselves to the task of identifying object types that a self-driving vehicle is likely to encounter such as pedestrians, cyclists, animals, other cars, or objects on the road. In this paper, we present a feature-based visual odometry algorithm based on a stereo-camera to perform localization relative to the surrounding environment for purposes of navigation and hazard avoidance. Using a stereo-camera enhances the accuracy with respect to monocular visual odometry. The algorithm relies on tracking a local map consisting of sparse 3D map points. By tracking this map across frames, the algorithm makes use of the full history of detected features which reduces the drift in the estimated motion trajectory.
Technical Paper

A Study on Practical Use of Diesel Combustion Calculation and Development of Automatic Optimizing Calculation System

2015-09-01
2015-01-1845
A KIVA code which is customized for passenger car's diesel engines is linked with an engine performance simulator and demonstrated with our optimizing calculation system. Aiming to fulfill our target calculation speed, the combustion model of the KIVA code is changed from a chemical reaction calculation method to a chemical equilibrium calculation method which is introduced a unique technique handling chemical species maps. Those maps contain equilibrium mole fraction data of chemical species according to equivalence ratio and temperature. Linking the KIVA code to the engine simulator helps to evaluate engine performance by indicated mean effective pressure (IMEP). The optimizing calculation system enables to obtain response surfaces. Observing the response surfaces, clear views of engine performance characteristics can be seen. The overview of this calculation system and some examples of the calculation are shown in this paper.
Journal Article

A Study on Knocking Prediction Improvement Using Chemical Reaction Calculation

2015-09-01
2015-01-1905
Compression ratio of newly developed gasoline engines has been increased in order to improve fuel efficiency. But in-cylinder pressure around top dead center (TDC) before spark ignition timing is higher than expectation, because the low temperature oxidization (LTO) generates some heat. The overview of introduced calculation method taking account of the LTO heat of unburned gas, how in-cylinder pressure is revised and some knowledge of knocking prediction using chemical kinetics are shown in this paper.
Technical Paper

Multidimensional Measure of Perceived Shift Quality Metric for Automatic Transmission Applying Kansei Engineering Methods

2013-04-08
2013-01-0336
This study was conducted to develop and validate a multidimensional measure of shift quality as perceived by drivers during kick-down shift events for automatic transmission vehicles. As part of the first study, a survey was conducted among common drivers to identify primary factors used to describe subjective gear-shifting qualities. A factor analysis on the survey data revealed four semantic subdimensions. These subdimensions include responsiveness, smoothness, unperceivable, and strength. Based on the four descriptive terms, a measure with semantic scales on each subdimension was developed and used in an experiment as the second study. Twelve participants drove and evaluated five vehicles with different gear shifting patterns. Participants were asked to make kick-down events with two different driving intentions (mild vs. sporty) across three different speeds on actual roadway (local streets and highway).
Technical Paper

Time-domain Transfer Path Analysis for Transient Phenomena Applied to Tip-in/Tip-out (Shock & Jerk)

2012-06-13
2012-01-1545
Tip-in/Tip-out of the accelerator pedal generates transient torque oscillations in the driveline. These oscillations may be amplified by P/T, suspension and body modes and will eventually be sensible at the receiver side in the vehicle, for example at the seat or at the steering-wheel. The forces that are active during this transient excitation are influenced by non-linear effects in both the suspension and the power train mounts. In order to understand the contribution of each of these forces to the total interior target response (e.g. seat rail vibration) a detailed investigation is performed. Traditional force identification methods are not suitable for low-frequent, transient phenomena like tip-in/tip-out. Mount stiffness method can not be used because of non-linear effects in the P/T and suspension mounts. Application of matrix inversion method based on trimmed body vibration transfer functions is not possible due to numerical condition problems.
Journal Article

Role of Predictive Engineering in the Design Evolution of a Thermoplastic Fender for a Compact SUV

2011-04-12
2011-01-0768
Automotive fenders is one such example where specialized thermoplastic material Noryl GTX* (blend of Polyphenyleneoxide (PPO) + Polyamide (PA)) has successfully replaced metal by meeting functional requirements. The evolution of a fender design to fulfill these requirements is often obtained through a combination of unique material properties and predictive engineering backed design process that accounts for fender behavior during the various phases of its lifecycle. This paper gives an overview of the collaborative design process between Mitsubishi Motors Corporation and SABIC Innovative Plastics and the role of predictive engineering in the evolution of a thermoplastic fender design of Mitsubishi Motors Corporation's compact SUV RVR fender launched recently. While significant predictive work was done on manufacturing and use stage design aspects, the focus of this paper is the design work related to identifying support configuration during the paint bake cycle.
Technical Paper

Human Driving Behavior Analysis and Model Representation with Expertise Acquiring Process for Controller Rapid Prototyping

2011-04-12
2011-01-0051
Driving car means to control a vehicle according to a target path, e.g. road and speed, with some constraints. Human driving models have been proposed and applied for simulations. However, human control in driving has not been analyzed sufficiently comparing with that of machine control system in term of control theory. Input - output property with internal information processing is not easily measured and described. Response of human driving is not as quicker as that of machine controller but human can learn vehicle response to driving operation and predict target changes. Driving behavior of an expert driver and a beginner in an emission test cycle was measured and difference in target speed tracking was looked into with performance indices. The beginner's operation was less stable than that of the expert. Transfer function of the vehicle system was derived based on linearized model to investigate human driving behavior as a tracking controller in the system.
Technical Paper

Grammatical Evolution Based Tool for Predicting Multivariable Response Surface for Laser Lap Welding

2008-04-14
2008-01-1372
The problem of predicting the quality of weld is critical to manufacturing. A great deal of data is collected under multiple conditions to predict the quality. The data generated at Daimler Chrysler has been used to develop a model based on grammatical evolution. Grammatical Evolution Technique is based on Genetic Algorithms and generates rules from the data which fit the data. This paper describes the development of a software tool that enables the user to choose input variables such as the metal types of top and bottom layers and their thickness, intensity and speed of laser beam, to generate a three dimensional map showing weld quality. A 3D weld quality surface can be generated in response to any of the two input variables picked from the set of defining input parameters. This tool will enable the user to pick the right set of input conditions to get an optimal weld quality. The tool is developed in Matlab with Graphical User Interface for the ease of operation.
Technical Paper

Direct Simulation for Aerodynamic Noise from Vehicle Parts

2007-08-05
2007-01-3461
Flows around a forward facing step and a fence are simulated on structured grid to estimate aerodynamic noise by using direct simulation. Calculated results of sound pressure level show quantitatively good agreement with experimental results. To estimate aerodynamic noise from 3D complex geometry, a simplified side mirror model is also calculated. Averaged pressure distribution on the mirror surface as well as pressure fluctuations on the mirror surface and ground are simulated properly. However, calculated result of sound pressure level at a location is about 20dB higher than experiment due to insufficient spatial resolution. To capture the propagation of sound waves, more accuracy seems to be required.
Technical Paper

Development of High-Performance PP Masterbatch for Interior Parts

2007-08-05
2007-01-3733
The authors have developed a high-performance talc masterbatch (hereinafter HPTMB) to achieve sufficient flexural modulus and impact resistance at the same time using inexpensive conventional PP as a base resin. Highly compressed fine talc and elastomers were selected as the filler and the impact resistance improver by considering their dispersion in the molded parts. The mixing process was also optimized. In order to stabilize impact resistance after molding, several elastomers were selected based on molecular weights and melting points. The developed HPTMB showed excellent balanced properties for instrument panels using inexpensive conventional PP as a base resin. The HPTMB is applied to the instrument panel of a Mitsubishi mini car. This technology will enable us to reduce the material cost by consolidating automotive interior plastic materials as well as by using available conventional PP.
Technical Paper

Experimental Determination of an Engine's Inertial Properties

2007-05-15
2007-01-2291
Determination of an engine's inertial properties is critical during vehicle dynamic analysis and the early stages of engine mounting system design. Traditionally, the inertia tensor can be determined by torsional pendulum method with a reasonable precision, while the center of gravity can be determined by placing it in a stable position on three scales with less accuracy. Other common experimental approaches include the use of frequency response functions. The difficulty of this method is to align the directions of the transducers mounted on various positions on the engine. In this paper, an experimental method to estimate an engine's inertia tensor and center of gravity is presented. The method utilizes the traditional torsional pendulum method, but with additional measurement data. With this method, the inertia tensor and center of gravity are estimated in a least squares sense.
Technical Paper

Experimental Modal Methodologies for Quantification of Body/Chassis Response to Brake Torque Variation

2007-05-15
2007-01-2343
Brake torque variation is a source of objectionable NVH body/chassis response. Such input commonly results from brake disk thickness variation. The NVH dynamic characteristics of a vehicle can be assessed and quantified through experimental modal testing for determination of mode resonance frequency, damping property, and shape. Standard full vehicle modal testing typically utilizes a random input excitation into the vehicle frame or underbody structure. An alternative methodology was sought to quantify and predict body/chassis sensitivity to brake torque variation. This paper presents a review of experimental modal test methodologies investigated for the reproduction of vehicle response to brake torque variation in a static laboratory environment. Brake caliper adapter random and sine sweep excitation input as well as body sine sweep excitation in tandem with an intentionally locked brake will be detailed.
Technical Paper

Application of the Modal Compliance Technique to a Vehicle Body in White

2007-05-15
2007-01-2355
This paper describes the application of the modal compliance method to a complex structure such as a vehicle body in white, and the extension of the method from normal modes to the complex modes of a complete vehicle. In addition to the usual bending and torsion calculations, the paper also describes the application of the method to less usual tests such as second torsion, match-boxing and breathing. We also show how the method can be used to investigate the distribution of compliance throughout the structure.
Technical Paper

Modeling of Plug-In Series Hybrid Powertrain for USPS Carrier Route Vehicle

2007-04-16
2007-01-0297
Postal delivery vehicles provide an excellent opportunity for using electric propulsion, since the number of miles driven daily on the delivery route is established and consistent. The vehicles also return nightly to a central depot so charging infrastructure is not an issue as long as the vehicles have sufficient charge to complete the routes. The United States Postal Service has evaluated electric vehicles for postal carrier route vehicles several times. The latest trial concluded in 2001. During the test of electric postal carrier route vehicles, the range was usually adequate for the delivery route; however there were a few instances of vehicles having to be retrieved because they had exhausted their batteries. This paper describes a series hybrid electric vehicle that addresses range issues with an on-board internal combustion engine powered generator to extend vehicle range.
Technical Paper

Multi-Disciplinary Aerodynamics Analysis for Vehicles: Application of External Flow Simulations to Aerodynamics, Aeroacoustics and Thermal Management of a Pickup Truck

2007-04-16
2007-01-0100
During the design process for a vehicle, the CAD surface geometry becomes available at an early stage so that numerical assessment of aerodynamic performance may accompany the design of the vehicle's shape. Accurate prediction requires open grille models with detailed underhood and underbody geometry with a high level of detail on the upper body surface, such as moldings, trim and parting lines. These details are also needed for aeroacoustics simulations to compute wall-pressure fluctuations, and for thermal management simulations to compute underhood cooling, surface temperatures and heat exchanger effectiveness. This paper presents the results of a significant effort to capitalize on the investment required to build a detailed virtual model of a pickup truck in order to simultaneously assess performance factors for aerodynamics, aeroacoustics and thermal management.
Technical Paper

Tailor-Welded Aluminum Blanks for Liftgate Inner

2007-04-16
2007-01-0421
Tailor welded steel blanks have long been applied in stamping of automotive parts such as door inner, b-pillar, rail, sill inner and liftgate inner, etc. However, there are few known tailor welded aluminum blanks in production. Traditional laser welding equipment simply does not have the capability to weld aluminum since aluminum has much higher reflectivity than steel. Welding quality is another issue since aluminum is highly susceptible to pin holes and undercut which leads to deterioration in formability. In addition, high amount of springback for aluminum panels can result in dimension control problem during assembly. A tailor-welded aluminum blank can help reducing dimension variability by reducing the need for assembly. In this paper, application of friction stir and plasma arc welded blanks on a liftgate inner will be discussed.
Technical Paper

Reliability Analysis of Dynamometer Loading Parameters during Vehicle Cell Testing

2007-04-16
2007-01-0600
In automotive testing, a chassis dynamometer is typically used, during cell testing, to evaluate vehicle performance by simulating actual driving conditions. The use of indoor cell testing has the advantage of running controlled tests where the cell temperature and humidity and solar loads can be well controlled. Driving conditions such as vehicle speed, wind speed and grade can be also controlled. Thus, repeated tests can be conducted with minimum test variations. The tractive effort required at the wheels of a vehicle for a given set of operating parameters is determined by taking into account a set of variables which affect vehicle performance. The forces considered in determination of the tractive effort include the constant friction force, variable friction force due to mechanical and tire friction, forces due to inertia and forces due to aerodynamic and wind effects. In addition, forces due to gravity are considered when road grades are simulated.
X