Refine Your Search

Search Results

Technical Paper

Analysis of Rear Seat Sled Tests with the 5th Female Hybrid III: Incorrect Conclusions in Bidez et al. SAE 2005-01-1708

2019-04-02
2019-01-0618
Objective: Sled test video and data were independently analyzed to assess the validity of statements and conclusions reported in Bidez et al. SAE paper 2005-01-1708 [7]. Method: An independent review and analysis of the test data and video was conducted for 9 sled tests at 35 km/h (21.5 mph). The 5th female Hybrid III was lap-shoulder belted in the 2nd or 3rd row seat of a SUV buck. For one series, the angle was varied from 0, 15, 30, 45 and 60 deg PDOF. The second series involved shoulder belt pretensioning and other belt modifications. Results: Bidez et al. [7] claimed “The lap belts moved up and over the pelvis of the small female dummy for all impact angles tested.” We found that there was no submarining in any of the tests with the production lap-shoulder belts. Bidez et al. [7] claimed “H3-5F dummies began to roll out of their shoulder belt at… 30 degrees. Complete loss of torso support was seen at 45 degrees without significant kinetic energy dissipation.”
Technical Paper

Rear Impact Tests of Starcraft-Type Seats with Out-of-Position and In-Position Dummies

2011-04-12
2011-01-0272
Objective: This study analyzed available rear impact sled tests with Starcraft-type seats that use a diagonal belt behind the seatback. The study focused on neck responses for out-of-position (OOP) and in-position seated dummies. Methods: Thirteen rear sled tests were identified with out-of-position and in-position 5 th , 50 th and 95 th Hybrid III dummies in up to 47.6 mph rear delta Vs involving Starcraft-type seats. The tests were conducted at Ford, Exponent and CSE. Seven KARCO rear sled tests were found with in-position 5 th and 50 th Hybrid III dummies in 21.1-29.5 mph rear delta Vs involving Starcraft-type seats. In all of the in-position and one of the out-of-position series, comparable tests were run with production seats. Biomechanical responses of the dummies and test videos were analyzed.
Journal Article

Jaw Loading Response of Current ATDs

2009-04-20
2009-01-0388
Biomechanical surrogates are used in various forms to study head impact response in automotive applications and for assessing helmet performance. Surrogate headforms include those from the National Operating Committee on Standards for Athletic Equipment (NOCSAE) and the many variants of the Hybrid III. However, the response of these surrogates to loading at the chin and how that response may affect the loads transferred from the jaw to the rest of the head are unknown. To address part of that question, the current study compares the chin impact response performance of select human surrogates to that of the cadaver. A selection of Hybrid III and NOCSAE based surrogates with fixed and articulating jaws were tested under drop mass impact conditions that were used to describe post mortem human subject (PMHS) response to impacts at the chin (Craig et al., 2008). Results were compared to the PMHS response with cumulative variance technique (Rhule et al., 2002).
Technical Paper

Influence of Seating Position on Dummy Responses with ABTS Seats in Severe Rear Impacts

2009-04-20
2009-01-0250
Objective: This study analyzes rear sled tests with a 95th% male and 5th% female Hybrid III dummy in various seating positions on ABTS (All Belt to Seat) seats in severe rear impact tests. Dummy interactions with the deforming seatback and upper body extension around the seat frame are considered. Methods: The 1st series involved an open sled fixture with a Sebring ABTS seat at 30 mph rear delta V. A 95th% Hybrid III dummy was placed in four different seating positions: 1) normal, 2) leaning inboard, 3) leaning forward and inboard, and 4) leaning forward and outboard. The 2nd series used a 5th% female Hybrid III dummy in a Grand Voyager body buck at 25 mph rear delta V. The dummy was leaned forward and inboard on a LeSabre ABTS or Voyager seat. The 3rd series used a 5th% female Hybrid III dummy in an Explorer body buck at 26 mph rear delta V. The dummy was leaned forward and inboard on a Sebring ABTS or Explorer seat.
Journal Article

The Hybrid III Dummy Family Subject to Loading by a Motorized Shoulder Belt Tensioner

2008-04-14
2008-01-0516
Motorized shoulder belt tensioning is a new automotive seatbelt technology which has shown promise to reduce automotive crash injuries. The current study was conducted to determine if the Hybrid III family of dummies is an appropriate biofidelic surrogate for studying motorized shoulder belt tensioning. The objective was to measure torso retraction time, torso position, torso velocity, internal resistive moment, changes in torso curvature and the center of rotation of torso extension during seatbelt tensioning for the Hybrid III family. A previous study developed a protocol and test fixture to measure the biomechanics of volunteers subject to quasi-static loading by a motorized shoulder belt tensioner. A fixture supported the occupant leaning forward and applied shoulder belt tension. Kinematics were quantified by analyzing the motion of reflective markers on the dummy using an eight camera digital video system. A three axis load cell measured internal resistance to extension.
Technical Paper

Crash Injury Risks for Obese Occupants

2008-04-14
2008-01-0528
Obesity rates are reaching an epidemic worldwide. In the US, nearly 40 million people are obese. The automotive safety community is starting to question the impact of obesity on occupant protection. This study investigates fatality and serious injury risks for front-seat occupants by Body Mass Index (BMI). NASS-CDS data was analyzed for calendar years 1993-2004. Occupant exposure and injury was divided in seven BMI categories with obese defined as those with BMI ≥ 30 kg/m2. Injuries were studied for drivers and right-front passengers and included analysis of lap-shoulder belted and unbelted occupants. The results show that obese occupants have a higher fatality risk compared to normal BMI occupants; morbidly obese occupants (BMI ≥ 40 kg/m2) have 2.25 times higher fatality risk (1.15% v 0.51%). The fatality risk for belted obese drivers was 0.29%, which was 6.7 times lower than the 1.94% for those unbelted. These rates are similar to other BMI occupants.
Technical Paper

Motorized Shoulder Belt Tensioning: Modeling and Performance for a Diverse Occupant Population

2008-04-14
2008-01-0515
Motorized shoulder belt tensioning is an occupant protection technology that has promise to reduce automotive crash injuries. The objective of this study was to model the response of a diverse forward-leaning occupant population (6-year-old child, 5th female, 50th male, 95th male) to shoulder belt tensioning during straight line pre-crash braking. The lumped mass model was based on experimental volunteer data for motorized shoulder belt tensioning gathered in a previous quasistatic study. The three dimensional model incorporated the biomechanical properties of the occupant populations, a motorized shoulder belt tensioner (DC motor and controller) and shoulder belt webbing models. Model validation was achieved against the volunteer experiments for angular torso position, torso velocity and shoulder belt moment applied to the torso.
Technical Paper

Occupant Responses in High-Speed Rear Crashes: Analysis of Government-Sponsored Tests

2008-04-14
2008-01-0188
The objective of this study was to analyze available anthropomorphic test device (ATD) responses from FMVSS 301-type rear impact tests. Rear impact test data was obtained from NHTSA and consisted of dummy responses, test observations, photos and videos. The data was organized in four test series: 1) NCAP series of 30 New Car Assessment Program tests carried out at 35 mph with 1979-1980 model year vehicles, 2) Mobility series of 14 FMVSS 301 tests carried out at 30 mph with 1993 model year vehicles, 3) 301 MY 95+ series of 79 FMVSS 301 tests carried out at 30 mph with 1995-2005 model year vehicles and 4) ODB series of 17 Offset Deformable Barrier tests carried out at 50 mph with a 70% overlap using 1996-1999 model year vehicles. The results indicate very good occupant performance in yielding seats in the NCAP, Mobility and 301 MY 95+ test series.
Technical Paper

Field Data Analysis of Rear Occupant Injuries Part I: Adults and Teenagers

2003-03-03
2003-01-0153
Since more occupants are using rear seats of vehicles, a better understanding of priorities for rear occupant protection is needed as future safety initiatives are considered. A two-part study was conducted on occupant injuries in rear seating positions. In Part I, adult and teenage occupants ≥13 years of age are investigated. In Part II, children aged 4-12 years old and toddlers and infants aged 0-3 are studied separately because of the use of infant and child seats and boosters involve different injury mechanisms and tolerances. The objectives of this study on adult and teenager, rear-seated occupants (≥13 years old) are to: 1) review accident data, 2) identify the distribution of rear occupants, and 3) analyze injury risks in various crash modes, including rollovers, frontal, side and rear impacts. Three databases were investigated: NASS-CDS, GES and FARS.
Technical Paper

Field Data Analysis of Rear Occupant Injuries Part II: Children, Toddlers and Infants

2003-03-03
2003-01-0154
Child safety continues to be an important issue in automotive safety for many reasons, including reported cases of serious injury from airbag deployments. As a result of extensive public education campaigns, most children are now placed in rear seats of vehicles. Accordingly, a more precise understanding of rear-seat occupant protection is developing as the second and third rows have become the primary seating area for children in SUVs, vans and passenger cars. The objective of this study was to review field crash and injury data from rear seats, identify the distribution of children and infants in rear seats, and analyze injury risks in various crash modes. The database used was the 1991-1999 NASS-CDS. When looking at crash configurations for 1st and 2nd row children, rollover crashes involved the highest incidence of MAIS 3+ injury, followed by frontal and side impacts. Lap-shoulder belt usage was similar for 1st and 2nd row children.
Technical Paper

Neck Biomechanical Responses with Active Head Restraints: Rear Barrier Tests with BioRID and Sled Tests with Hybrid III

2002-03-04
2002-01-0030
Active head restraints are being used to reduce the risk of whiplash in rear crashes. However, their evaluation in laboratory tests can vary depending on the injury criteria and test dummy. The objective of this study was to conduct barrier tests with BioRID and sled tests with Hybrid III to determine the most meaningful responses related to whiplash risks in real-world crashes. This study involved: (1) twenty-four rear barrier tests of the Saab 9000, 900, 9-3 and 9-5 with two fully instrumented BioRID dummies placed in the front or rear seats and exposed to 24 and 48.3 km/h barrier impacts, and (2) twenty rear sled tests at 5-38 km/h delta V in three series with conventional, modified and SAHR seats using the Hybrid III dummy. A new target superposition method was used to track head displacement and rotation with respect to T1. Insurance data on whiplash claims was compared to the dummy responses.
Technical Paper

Research Issues on the Biomechanics of Seating Discomfort: An Overview with Focus on Issues of the Elderly and Low-Back Pain

1992-02-01
920130
This paper reviews issues relating to seats including design for comfort and restraint, mechanics of discomfort and irritability, older occupants, and low-back pain. It focuses on the interface between seating technology and occupant comfort, and involves a technical review of medical-engineering information. The dramatic increase in the number of features currently available on seats outreaches the technical understanding of occupant accommodation and ride comfort. Thus, the current understanding of seat design parameters may not adequately encompass occupant needs. The review has found many pathways between seating features and riding comfort, each of which requires more specific information on the biomechanics of discomfort by pressure distribution, body support, ride vibration, material breathability, and other factors. These inputs stimulate mechanisms of discomfort that need to be quantified in terms of mechanical requirements for seat design and function.
Technical Paper

Evaluation of Armrest Loading in Side Impacts

1991-10-01
912899
Door armrests of different crush properties and placement were evaluated in a series of side impact sled tests. Three armrest designs were fabricated with an identical shape but different crush force. The crush properties covered a range in occupant protection systems based on knowledge of human tolerance in side impacts. With BioSID, the softest armrest produced the lowest compression and Viscous responses, and the probability of AIS 4+ injury was below 1%. The compression-based responses increased significantly in tests with armrests of a higher crush force. The profile of the stiffer armrests clearly protruded into the dummy, and the probability of serious injury was 86%-100% based on compression. With SID, the lowest TTI(d) was with the intermediate stiffness armrest. The SID dummy and TTI(d) criterion indicated a 4%-8% probability of AIS 4+ injury for all test conditions and armrest designs.
Technical Paper

Effectiveness of Safety Belts and Airbags in Preventing Fatal Injury

1991-02-01
910901
Airbags and safety belts are now viewed as complements for occupant protection in a crash. There is also a view that no single solution exists to ensure safety and that a system of protective technologies is needed to maximize safety in the wide variety of real automotive crashes. This paper compares the fatality prevention effectiveness, and biomechanical principles of occupant restraint systems. It focuses on the effectiveness of various systems in preventing fatal injury assuming the restraint is available and used. While lap-shoulder belts provide the greatest safety, airbags protect both belted and unbelted occupants.
Technical Paper

Assessing the Safety Performance of Occupant Restraint Systems

1990-10-01
902328
The purpose of this study was to investigate approaches evaluating the performance of safety systems in crash tests and by analytical simulations. The study was motivated by the need to consider the adequacy of injury criteria and tolerance levels in FMVSS 208 measuring safety performance of restraint systems and supplements. The study also focused on additional biomechanical criteria and performance measures which may augment FMVSS 208 criteria and alternative ways to evaluate dummy responses rather than by comparison to a tolerance level. Additional analysis was conducted of dummy responses from barrier crash and sled tests to gain further information on the performance of restraint systems. The analysis resulted in a new computer program which determined several motion and velocity criteria from measurements made in crash tests.
Technical Paper

Design of a Modified Chest for EUROSID Providing Biofidelity and Injury Assessment

1989-02-01
890881
The purpose of this study was to replace the axial deforming elements in the current EUROSID dummy with spring steel ribs and attached damping material to provide improved biofidelity in the lateral chest impact response. This report provides a description of the design, construction, and evaluation of the modified EUROSID chest for injury assessment in side impact crashes. Three spring steel ribs were designed to provide stiffness and deflections of 120 mm when attached to the block on the spine of the EUROSID dummy. Damping material was epoxied to the ribs and the system provided biofidelity in the lateral impact response for blunt impact loading at 4.3 m/s and 6.7 m/s. The new design provides significantly reduced inertia of the near side rib cage, elastic and viscous properties that are representative of the lateral human response and the ability to measure the deflection response of the rib cage for injury assessment with the Viscous response.
Technical Paper

The Effect of Limiting Impact Force on Abdominal Injury: A Preliminary Study

1986-10-27
861879
This report describes a series of experiments using Hexcel(TM) to limit the impact force in lateral abdominal impacts. Two hundred fourteen (214) anesthetized New Zealand White rabbits were impacted at 5 to 15 m/s using a pneumatic impactor. Injury responses from tests with a force-limiting impact interface (94 tests) were compared with the responses from tests with a rigid impact interface (120 tests) having the same level of lateral abdominal compression. The Hexcel had a length of 3 inches, the same diameter as the rigid impactor, and crushed at a constant force (pressure level of 232 kPa (33 psi)) once deformation was initiated. The results of these tests showed that the probability of serious abdominal injury did not change significantly with the Hexcel, even though peak pressures were reduced to as little as one third of their previous values.
Technical Paper

Biomechanics of Bone and Tissue: A Review of Material Properties and Failure Characteristics

1986-10-01
861923
This paper contains a review of current information on biological structure, material properties and failure characteristics of bone, articular cartilage, ligament and tendon. The load-deformation response of biological tissues is presented with particular reference to the microstructure of the material. Although many of the tissues have been characterized as linear, elastic and isotropic materials, they actually have a more complicated response to load, which includes stiffening with increasing strain, inelastic yield, and strain rate sensitivity. Failure of compact and cancellous bone depends on the rate, type, and direction of loading. Soft biological tissues are vlscoelastie and exhibit a higher load tolerance with an increasing rate of loading. The paper includes a discussion on the basic principles of biomechanics and emphasizes material properties and failure characteristics of biological tissues subjected to impact loading.
Technical Paper

Biomechanics of Nonpenetrating Aortic Trauma: A Review

1983-10-17
831608
Life threatening chest injury can involve partial or full tears of the aorta. Investigations of fatal injuries in automobile accidents indicate that aortic trauma occurs in 10-20% of the cases. The major sites of aortic trauma include the aortic isthmus, the root, and the aortic insertion at the diaphragm - all of which are points of aortic tethering. The biomechanics of the injury process involve stretching of the vessel from points of tethering and hydrodynamic increases in blood pressure, which stretch the tissue to failure at a strain of about 150%. The non-isotropic stretch response of aortic tissue is discussed with reference to the frequent transverse orientation of the laceration. Congenital and pathophysiological conditions also influence the failure characteristics of the tissue. The significant factors associated with traumatic injury of the aorta are discussed in this review paper which is based on published technical information.
X