Refine Your Search

Topic

Search Results

Technical Paper

Impact Testing of Passenger Vehicle and Semi-Truck Pneumatic Tires and Rims

2023-04-11
2023-01-0625
Wheels and tires on vehicles, are often directly (or indirectly) involved in collisions with other vehicles or fixed objects. In this study, the effects of the pneumatic tire and rim, as it contributes to a dynamic collision, was isolated and studied. A total of 15 mounted tires of various common sizes were selected to conduct 35 dynamic impact tests into the flat face of an instrumented concrete barrier. The tires and rims used in the tests ranged from heavy truck, light truck, down to common passenger vehicle tires. Each of the 15 tires and rims were impact tested individually to failure in order to explore the dynamic response and performance of pneumatic tires in collisions. Of the 35 tests, 28 were conducted with a single tire and rim configuration and 7 tests were conducted simulating a dual truck tire configuration. It was determined that the coefficient of restitution for 22 of the tire impacts into the rigid flat faced barrier were remarkably similar, around 0.9 ± 0.1.
Technical Paper

Rollover Testing of Sport Utility Vehicles (SUVs) on an Actual Highway

2010-04-12
2010-01-0521
A follow-up study on rollover testing was conducted along a section of a remote rural highway using six full-size sport utility vehicles (SUVs) of differing makes and models. The vehicles were instrumented and towed to highway speeds before being released, at which point an automated steering controller steered the vehicles through a series of maneuvers intended to result in rollover. A total of eight tests were conducted and documented, six rollovers and two non-rollover events. The six rollover events provide trip and tumbling conditions for each vehicle. The two non-rollover attempts produced cornering tire marks and allowed for the documentation of near roll conditions for the two out-of-control vehicles. All eight tests presented are instrumented real-world type tests that were later correlated based upon the data obtained.
Journal Article

Rollover Testing on an Actual Highway

2009-04-20
2009-01-1544
Three full-size sedans were towed to highway speeds along a section of a remote rural highway. Upon release, an automated steering controller steered the vehicles through a series of maneuvers intended to result in rollover. Repeated attempts to roll each vehicle were made until rollover resulted. Non-rollover attempts produced cornering tire marks by the out-of-control vehicle. Out of numerous runs, 3 rollover and 2 non-rollover tests were selected for documentation and analysis. One additional steer-induced rollover test is presented that was conducted along a simulated road section at a closed test-track facility. All six tests presented are instrumented real-world type tests that were later reconstructed based upon the data obtained from on-board instrumentation, videotape, survey measurements, and still photographs obtained of each respective test.
Technical Paper

Fatal and Severe Injuries in Rear Impact; Seat Stiffness in Recent Field Accident Data

2008-04-14
2008-01-0193
A decade ago, James, et.al. published a detailed study of the available NASS data on severe rear impacts, with findings that “… stiffened or rigid seat backs will not substantially mitigate severe and fatal injuries in rear impacts.” No field accident study has since been advanced which refutes this finding. Advocates of rigidized seat backs often point to specific cases of severe rear impacts in which MAIS 4+ injuries are associated with seat back deformation, coupled with arguments supporting stiffer seatback designs. These arguments are generally based upon laboratory experiments with dummies in normal seating positions. Recent field accident data shows that generally, in collisions where the majority of societal harm is created, yielding seats continue to provide benefits, including those associated with whiplash associated disorders (WAD).
Technical Paper

Crash Pulse Scaling Applied to Accident Reconstruction

2008-04-14
2008-01-0183
A crash pulse representative of the accident event is often requested in addition to the reconstructed speed, deltaV, and PDOF. One approach to crash pulse generation is to scale available test data to the accident condition. Scaling formulas for time and acceleration are derived based upon commonly available accident reconstruction information from the crush profiles, closing speed, and vehicle deltaV. Scaling is based upon the compression phase of the crash pulse. A crash test similar to the accident may not be readily available unless a crash test is performed that is designed to represent a specific accident. Available test results may not reproduce the accident but may approximate it in several important aspects. In such situations it is necessary to scale a reconstructed crash pulse from the most representative test available based upon the test parameters and the reconstruction estimates.
Technical Paper

Derivation of Vehicle-to-Vehicle Frontal Crash Pulse Estimates from Barrier Crash Data

2008-04-14
2008-01-0174
The BSAN crash pulse model has been shown to provide useful information for restraint sensing evaluation and for structural force-displacement studies in flat fixed rigid barrier (FFRB) crashes. This paper demonstrates a procedure by which the model may be extended for use with central and offset vehicle to vehicle (VTV) crashes through appropriate combinations of vehicle parameters.
Technical Paper

Roadway Asphalt Damage Force Analysis for Accident Reconstruction

2008-04-14
2008-01-0173
In reconstruction of on-roadway vehicle accidents, tire-road surface friction coefficient, mu (μ), can be estimated using a variety of available data. Common ranges and values for μ are used in calculations forming the foundation for most accident reconstruction techniques. When the roadway surface is gouged or disrupted by vehicle components, accounting of dissipated energy can be successful where supporting force data exists. Roadway gouge forces can vary widely depending upon such factors as road surface construction, surface temperature, and the velocity and geometry of the gouging mechanism. Such dissipated energy can be significant in accounting of total reconstruction energy. This paper presents experiments aimed at quantifying gouge force by controlled pavement gouging tests.
Journal Article

Crash Pulse and DeltaV Comparisons in a Series of Crash Tests with Similar Damage (BEV, EES)

2008-04-14
2008-01-0168
Nine crash tests were conducted at various speeds on three vehicles in three locations under conditions that resulted in similar damage. The objective was to study the differences in crash pulse, deltaV, crush depth, and impact location with change in closing velocity from 20 to 55 mph. Three equal-weight Nissan Sentra vehicles were impacted in the front, rear, and side by an associated narrow object impact device. The three impactors were identically shaped, flat-faced, one-foot wide, and rigid; but each was designed to have a different weight (light, moderate, and heavy weight). The heavy, moderate, and light weight impactors collided with their associated test vehicle at low, medium, and high impacting speeds, respectively, in order to produce damage corresponding to a 20 mph BEV (Barrier Equivalent Velocity) in all nine tests. Impacts at the same location on the three vehicles produced nearly identical damage yet substantially differed in deltaV.
Technical Paper

Pulse Shape and Duration in Frontal Crashes

2007-04-16
2007-01-0724
Understanding of events within the history of a crash, and estimation of the severity of occupant interior collisions depend upon an accurate assessment of crash duration. Since this time duration is not measured independently in most crash test reports, it must usually be inferred from interpretations of acceleration data or from displacement data in high-speed film analysis. The significant physical effects related to the crash pulse are often essential in reconstruction analyses wherein the estimation of occupant interior “second collision” or airbag sensing issues are at issue. A simple relation is presented and examined which allows approximation of the approach phase and separation phase kinematics, including restitution and pulse width. Building upon previous work, this relation allows straightforward interpretation of test data from related publicly available test reports.
Technical Paper

Load Path Considerations for Side Crash Compatibility

2007-04-16
2007-01-1176
Heavier, larger pickups and SUVs are bound to encounter lighter, smaller passenger vehicles in many future accidents. As the fleet has evolved to include more and more SUVs, their frontal structures are often indistinguishable from pickup fronts. Improvements in geometric compatibility features are crucial to further injury prevention progress in side impact. In corner crashes where modern bullet passenger car (PC) bumpers make appropriate geometrical overlap with target PC rocker panels, concentrated loads sometimes disrupt foam and plastic bumper corners, creating aggressive edges. In situations where sliding occurs along the structural interface, these sharp edges may slice through doors, panels and pillars. End treatments for such bumper beams should be designed to reduce this aggressive potential.
Technical Paper

Performance of Rear Seat Belt Restraints

2003-03-03
2003-01-0155
Field experience has consistently indicated that lap-only belts and lap-shoulder belts perform well and about equally in prevention of fatalities and serious injuries in the rear seating positions. Analyses based on overall usage and injury figures from the Fatal Analysis Reporting System (FARS), double-pair analysis of FARS data, and still older data bases have shown that, in the rear outboard seating positions, injury rates are about the same for lap-only and lap-shoulder belted crash occupants. Although sparse, recently available field data from the 1988-2001 National Analysis Sampling System / Crashworthiness Data System (NASS/CDS) files confirm the finding that, when used by rear seat occupants, lap-only belts perform about equally with lap-shoulder belts as countermeasures for serious and fatal injury in severe frontal crashes.
Technical Paper

Narrow Object Impact Analysis and Comparison with Flat Barrier Impacts

2002-03-04
2002-01-0552
Crash behavior in narrow object impacts was examined for the perimeter of a 4-door full size sedan. Additional test data was obtained for this vehicle by impacting four sedans with a rigid pole mounted to a massive moving barrier (MMB) in the front, right front oblique, right side, and rear. The vehicles were stationary when impacted by the MMB. Two of the four cars were repeatedly impacted with increasing closing speeds in the front and side, respectively. Each test was documented and the resulting deformation accurately measured. The stiffness characteristics were calculated for the perimeter of car and were presented using the power law damage analysis model. The vehicle's crash performance in these pole tests was compared to that of NHTSA's flat fixed barrier tests (deformable and non-deformable) for the front, side, and rear of this vehicle.
Technical Paper

Non-Linear Damage Analysis in Accident Reconstruction

2001-03-05
2001-01-0504
Frontal, side, rear, pole and offset car to car data sets are examined using familiar damage analysis models: constant stiffness, bilinear stiffness, and force saturation. In addition to these, a non-linear power-law formulation is introduced and compared to the others. The power-law provides a nonlinear stiffness coefficient that transitions between a constant force model and constant stiffness model as the power goes from 0 to 1. It also provides a continuous, single valued function that is easily integrated and used in the analysis. Power-law nonlinearity can be used to smoothly fit low through high crush data. Geometric integral parameters are developed which represent irregular crush profiles. These permit graphical comparison of tests with non-uniform crush data (such as offset, side, and narrow object) with uniform crush test data. They also provide a means for comparison of accident damage with the test data set.
Technical Paper

Crash Testing with a Massive Moving Barrier as an Accident Reconstruction Tool

2000-03-06
2000-01-0604
Damage analysis methods in accident reconstruction use an estimate of vehicle stiffness together with measured crush to calculate crush energy, closing speed, and vehicle delta-V. Stiffness is generally derived from barrier crash test data. The accident being reconstructed often involves one or more conditions for which vehicle stiffness is not well defined by existing crash tests. Massive moving barrier (MMB) testing is introduced as a tool to obtain additional and accident specific stiffness coefficients applicable for reconstruction. The MMB impacts a stationary vehicle of similar structure as the accident vehicle under accident-specific conditions like impact location, angle, over-ride / under-ride, offset and damage energy. A rigid or deformable structure is mounted to the front of the MMB, representative of the impacting structure in the accident. Four illustrative tests are presented.
Technical Paper

Estimating Vehicle Deformation Energy for Vehicles Struck in the Side

1998-02-23
980215
The reconstruction of accidental impacts to the side structure of one or more accident vehicles often incorporates estimates of the energy absorbed by laterally struck vehicle(s). Such estimates generally involve considerably more issues than does the assessment of frontal or rear impact deformation energy. The sides of vehicles are, compared to the usual striking object, relatively broad, and they contain zones of varying stiffness supported by collapsible box structures. Side stiffnesses can vary widely, depending upon impact geometry. Most side impact crash tests that can readily be used to make estimates of side stiffness have been conducted by the National Highway Traffic Safety Administration (NHTSA).
Technical Paper

LIMITATIONS OF ATB/CVS AS AN ACCIDENT RECONSTRUCTION TOOL

1997-02-24
971045
Occupant simulation models have been used to study trends or specific design changes in “typical” accident modes such as frontal, side, rear, and rollover. This paper explores the usage of the Articulated Total Body Program (ATB) as an accident reconstruction tool. The importance of model validation is discussed. Specific areas of concern such as the contact model, force-deflection data, occupant parameters, restraint system models, head/neck loadings, padding, and intrusion are discussed in the context of accident reconstruction.
Technical Paper

Occupant Protection in Rear-end Collisions: II. The Role of Seat Back Deformation in Injury Reduction

1991-10-01
912914
The National Highway Traffic Safety Administration (NHTSA) has recently opened a rulemaking docket seeking comments on the design of automobile seats and their performance in rear Impacts. There are two philosophies of seat design: one advocates rigid seats, the other advocates seats which yield in a controlled manner. A review of the legislative history of seat back design standards indicates that yielding seats have historically been considered a better approach for passenger cars. The design characteristics of current production automobile seats are evaluated and show no significant changes over the past three decades. Concerns about the performance of rigid seat backs in real world rear impacts are discussed, specifically increased injury exposure due to ramping, rebound and out-of-position occupants.
Technical Paper

Occupant Protection in Rear-end Collisions: I. Safety Priorities and Seat Belt Effectiveness

1991-10-01
912913
Recent detailed field accident data are examined with regard to injuries associated with rear impacts. The distribution of “Societal Harm” associated with various injury mechanisms is presented, and used to evaluate the performance of current seat back and restraint system designs. Deformation associated with seat back yield is shown to be beneficial in reducing overall Societal Harm in rear impacts. The Societal Harm associated with ejection and contact with the vehicle rear interior (the two injury mechanisms addressed by a rigid seat approach), is shown to be minimal. The field accident data also confirm that restraint usage in rear impacts has a substantial injury-reducing effect. Laboratory tests and computer simulations were run to investigate the mechanism by which seat belts protect occupants in rear impacts.
Technical Paper

Force/Deflection and Fracture Characteristics of the Temporo-parietal Region of the Human Head

1991-10-01
912907
Impact tests were conducted on thirty-one unembalmed human cadaver heads. Impacts were delivered to the temporo-parietal region of fixed cadavers by two, different sized, flat-rigid impactors. Yield fracture force and stiffness data for this region of the head are presented. Impactor surfaces consisted of a 5 cm2 circular plate and a 52 cm2 rectangular plate. The average stiffness value observed using the circular impactor was 1800 N/mm, with an average bone-fracture-force level of 5000 N. Skull stiffness for the rectangular impactor was 4200 N/mm, and the average fracture-force level was 12,500 N.
X