Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

The Transient Deposition and Particle Changes Across a Combined Oxidation and Hydrocarbon Storage Catalyst under Diesel Cold Start Conditions

2001-05-07
2001-01-1951
This work is part of a larger programme to investigate the storage at low power conditions and release at high power conditions in real diesel engine exhaust systems. The initial particle storage in the oxidation catalyst, followed by a release of particles a few minutes later, is explored, and the associated particle size distribution changes determined. A Ford 1.8L IDI Diesel Engine, Turbocharged and Intercooled (TCIC), and equipped with Exhaust Gas Recirculation (EGR), was used under high speed and high power conditions, both during cold start. The commercial close-coupled diesel oxidation catalyst had an associated hydrocarbon adsorber for cold start hydrocarbon control. The tests were carried out using a step cold start to a fixed low power output, typical of city driving. The ELPI particle size analyser was used together with constant temperature gravimetric filter based mass samples upstream and downstream of the catalyst.
Technical Paper

Particulate Mass Accumulation and Release in Practical Diesel Engine Exhaust Systems under Cold Start Conditions

2000-10-16
2000-01-2983
The accumulation and release of particulate matter within the exhaust system of a modern light-duty diesel engine was studied during a step cold start to three steady state load conditions, idle, 10 and 15kW. Changes in particulate mass concentration through the various components of the exhaust system were dependent on the previous short-term history of the engine operation, and on the engine speed reached during cold start. Particulate matter was deposited within the oxidation catalyst when cold and in the downstream exhaust silencer at idle and low power conditions. Particulate matter was released from the first silencer at all three test conditions and this release exceeded the deposition in the downstream silencer and resulted in a net exhaust system particulate blowout, at all three test conditions. This was a large fraction of the tailpipe emissions at all three test conditions.
Technical Paper

Diesel Particle Size Distribution Changes Along a Practical Exhaust System During Cold Start in a Passenger Car IDI Diesel

2000-03-06
2000-01-0514
Diesel exhaust particle size distribution and total number concentration were measured at different positions along the exhaust system of a practical light-duty passenger car diesel engine. Continuous particle size measurements during the diesel cold start were made in 12 particle size ranges using the ELPI particle size analyser. Three engine speeds were studied using a step cold start procedure to the set load and speed condition. The exhaust system had an oxidation catalyst with hydrocarbon absorber and two silencers. Particle size distributions were determined upstream and downstream of the catalyst and the two silencers. There were considerable variations in the particle number and size distribution after the cold start. The catalyst was shown to act as a store for fine particles and there were further particle losses across the two silencers.
Technical Paper

Oil Quality in Diesel Engines With On Line Oil Cleaning Using a Heated Lubricating Oil Recycler

1999-03-01
1999-01-1139
SYNOPSIS A method of cleaning the oil on line was investigated using a bypass fine particulate filter followed by an infra red heater to remove water and light diesel fractions in the oil. This was tested on a range of on road vehicles and a Ford 1.8 litre IDI passenger car engine on a test bed. Comparison was made with the oil quality on the same vehicles and engines without the on-line recycler. Test times were from 200 to 1500 hours of oil ageing and some of the tests showed that the oil quality was still good after 4 times the normal oil life. The results showed that the on line oil recycler cleaning system reduced the rate of fall of the TBN and rate of increase of the TAN. There was a very significant reduction in the soot in oil and the fuel dilution. There was also a consistent reduction in all the wear metals apart from copper and a decrease in the rate of reduction of oil additives. There was also measured on the Ford IDI engine a 5% reduced fuel consumption.
Technical Paper

The Measurement of Lubricating Oil Combustion Efficiency Using Diesel Particulate Analysis

1998-02-23
980523
The relationship between a diesel engine lubricating oil consumption and the particulate volatile unburnt lube oil emissions depends on the combustion efficiency of the lube oil in the engine. Very little data exists on this topic and this is reviewed. An experimental procedure for the determination of lubricating oil consumption from a calcium mass balance between the lubricating oil and particulate was used combined with a thermogravimetric analysis of the particulate to obtain the unburnt lube oil emissions, together these techniques enabled the lube oil combustion efficiency to be determined This technique only requires the particulate filter paper as an experimental measurement in the engine test. Initial results for a Perkins 4-236 NA DI diesel engine are presented for a range of loads and speeds.
Technical Paper

Diesel Fumigation Partial Premixing for Reduced Particulate Soot Fraction Emissions

1998-02-23
980532
Diesel fuel was injected into the inlet air port of a Perkins 4-236 NADI diesel engine using a Stanadyne 5 micron fuel injector directed onto the back of the inlet valve so as to give the best port fuel injection vaporisation. The fuel was timed to be injected when the inlet valve was open and the exhaust valve closed. Up to 20% of the maximum power fuel flow was injected into the inlet port and the effect is to reduce the diffusion burning phase of diesel combustion at maximum power and hence to reduce soot emissions. The results show that an older relatively high emitting diesel engine can be retrofitted with this technology to produce large soot emission reductions with soot reduced to the level of modern low emission engines. Fumigation also decreases the ignition delay, which at constant fuel injection timing reduces the NOx emissions.
Technical Paper

The Role of Exhaust Pipe and Incylinder Deposits on Diesel Particulate Composition

1992-09-01
921648
Diesel engine exhaust pipe and incylinder deposits were analysed for the global fuel, lube oil, carbon and ash fractions for a range of diesel engines. A large SOF fraction, typically 30%, was found and this was dominated by lubricating oil. These deposits are shown to contain significant levels of PAH and hence provide a source of diesel PAH emissions and possible sites for incylinder pyrosynthesis of high molecular weight PAH. A Perkins 4-236 NA DI was used to investigate the role of exhaust pipe deposits on PAH emissions. It was shown that PAH compounds could be volatilised from the exhaust pipe. The difference in the exhaust inlet and outlet particulate composition for diesel and kerosene fuels was used to quantify the n-alkane and PAH emissions originating from the exhaust pipe deposits. Comparison with pure PAH free fuels showed that the exhaust outlet PAH composition was similar to that expected from the exhaust pipe deposits.
Technical Paper

The Composition of the Organic Fraction of Particulate Emissions of a Diesel Operated on Vegetable Oil

1990-09-01
901563
Pure sunflower oil was used in a Perkins 4-236 DI diesel engine at 2200 rpm and maximum power, particulate samples at 50°C were obtained from the exhaust 7m from the exhaust port in an air cooled exhaust pipe. The engine lubricating oil was fresh and contained no fuel contamination. The sunflower oil had higher particulate, UHC, CO and NOx emissions than for diesel. This was attributed to the shorter ignition delay and higher diffusive burning. The higher UHC emissions also resulted in a higher particulate SOF. Sunflower oil contained no fuel PAH above 1 ppm and there was no source of PAH from the lubricating oil. However, significant PAH emissions were found in the particulate SOF, but at a level well below that for diesel. It was shown that the bulk of this PAH could be attributed to the thermal desorption of PAH from the exhaust pipe walls. Hence, there was little PAH generated by pyrosynthesis as part of the combustion process.
Technical Paper

Diesel Particulate Composition Changes Along an Air Cooled Exhaust Pipe and Dilution Tunnel

1989-02-01
890789
Exhaust particulate and gas composition samples were obtained at various distances along an externally air cooled exhaust from a Perkins 4-236 single cylinder engine. The change in the particulate composition was determined as a function of the exhaust distance and local temperature. Exhaust temperatures were in the range 200 - 260C at entry to the tunnel at all engine conditions. A constant filter paper and sample temperature of 50C was used for both exhaust and dilution tunnel samples and the filter paper was mounted in an oven for this purpose and the particulate sample was tranported through heated lines to this oven. Associated with these particulate measurements were gas analysis measurements. UHC were measured at 180, 50 and 2C in the exhaust and the differences were taken as an indication of the condensable hydrocarbons over that temperature difference.
Technical Paper

Pyrosynthesis of PAH in a Diesel Engine Operated on Kerosene

1989-02-01
890827
The objective was to investigate PAH emissions in diesel particulates using a kerosene fuel that had a PAH content that was predominantly two ring. Higher PAH were two orders of magnitude lower in concentration in the fuel than for diesel, but the two ring PAH were a higher proportion of the fuel than for diesel. Pyrosynthesis of higher PAH in the particulate from the two ring PAH would thus be easier to detect for kerosene. Fresh PAH free lubricating oil was used throughout in an attempt to eliminate additional sources of PAH. The kerosene results showed that emissions of higher PAH were an order of magnitude lower than with diesel. However, these PAH emissions were compatible with an unburnt fuel source, as the n-alkane results showed that the higher MW fuel components had a much greater survivablity than for diesel. A contribution to PAH and n-alkane emissions from the exhaust pipe deposits was also identified.
X