Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Meeting RFS2 Targets with an E10/E15-like Fuel - Experimental and Analytical Assessment of Higher Alcohols in Multi-component Blends with Gasoline

2013-10-14
2013-01-2612
This paper evaluates the potential of adding higher alcohols to gasoline blendstock in an attempt to improve overall fuel performance. The alcohols considered include ethanol, normal- and iso-structures of propanol, butanol and pentanol as well as normal-hexanol (C2-C6). Fuel performance is quantified based on energy content, knock resistance as well as petroleum displacement and promising multi-component blends are systematically identified based on property prediction methods. These promising multi-component blends, as well as their respective reference fuels, are subsequently tested for efficiency and emissions performance utilizing a gasoline direct injection, spark ignition engine. The engine test results confirm that combustion and efficiency of tailored multi-component blends closely match those of the reference fuels. Regulated emissions stemming from combustion of these blends are equal or lower compared to the reference fuels across the tested engine speed and load regime.
Technical Paper

Vegetable Oil with Ester Base as a Two-Cycle SI Engine Lubricant

2008-06-23
2008-01-1718
The work reported here was initiated in the attempt to develop a bio-based two-cycle SI engine lubricant as an alternative to commercially available mineral based synthetics. In the first phase of the project, it was discovered that straight soy based biodiesel at any volume ratio with gasoline had insufficient lubricity to prevent engine seizure. Mixtures of synthetic with biodiesel proved to have adequate lubricity. A two-cycle lubricant was then synthesized via a trans-esterification of canola oil with hydrogen peroxide and vinegar forming canola oil based biodiesel (COBB). COBB proved to have superior lubricity to synthetic lubricant. The superior lubricity of COBB is hypothesized to be due to a saturated solution of non-reacted canola oil in the biodiesel. This hypothesis was tested using mixtures of canola oil in a solution of phenyl acetate as a two-cycle SI engine lubricant.
X