Refine Your Search

Topic

Search Results

Technical Paper

Investigation of Fuel Injection Pressure Impact on Dimethyl Ether Combustion

2023-10-31
2023-01-1644
Compression ignition engines used in heavy-duty applications are typically powered by diesel fuel. The high energy density and feedstock abundance provide a continuing source for the immense energy demand. However, the heavy-duty transportation sector is challenged with lowering greenhouse gas and combustion by-product emissions, including carbon dioxide, nitrogen oxides, and particulate matter. The continuing development of engine management and combustion strategies has proven the ability to meet current regulations, particularly with higher fuel injection pressure. Nonetheless, a transition from diesel to a renewable alternative fuel source will play a significant role in reducing greenhouse gases while maintaining the convenience and energy density inherent in liquid fuels. Dimethyl ether is a versatile fuel that possesses combustion properties suitable for compression ignition engines and physical properties helpful for clean combustion.
Technical Paper

Investigation of Dimethyl Ether Dual-Fuel Combustion Using Propane and Ethanol as Premixed Fuel

2023-09-29
2023-32-0018
The combustion and emission characteristics of dual-fuel combustion were investigated using dimethyl ether direct injection and premixed low-carbon fuels. Dimethyl ether was used as the direct injection fuel for its high reactivity and low propensity to form particulate matter. Ethanol and Propane, two fuels of low reactivity, were premixed in the intake port. An injection timing sweep of varying premixed energy shares and engine loads was tested. Combustion analysis was conducted based on in-cylinder pressure measurements while detailed speciation of engine-out emissions was performed via FTIR. The proper injection advance and premixed energy share can realize low NOx and high combustion efficiency. Ethanol showed stronger impact to DME ignition delay as compared with propane.
Technical Paper

Performance and Emission Characteristics of Direct Injection DME Combustion under Low NOx Emissions

2023-04-11
2023-01-0327
Compression ignition internal combustion engines provide unmatched power density levels, making them suitable for numerous applications including heavy-duty freight trucks, marine shipping, and off-road construction vehicles. Fossil-derived diesel fuel has dominated the energy source for CI engines over the last century. To mitigate the dependency on fossil fuels and lessen anthropogenic carbon released into the atmosphere within the transportation sector, it is critical to establish a fuel source which is produced from renewable energy sources, all the while matching the high-power density demands of various applications. Dimethyl ether (DME) has been used in non-combustion applications for several decades and is an attractive fuel for CI engines because of its high reactivity, superior volatility to diesel, and low soot tendency. A range of feedstock sources can produce DME via the catalysis of syngas.
Technical Paper

Combustion Characterization of DME-Fueled Dual Fuel Combustion with Premixed Ethanol

2022-03-29
2022-01-0461
The heterogeneous nature of direct injection (DI) combustion yields high combustion efficiencies but harmful emissions through the formation of high nitrogen oxide (NOx) and smoke emissions. In response, extensive empirical and computational research has focused on balancing the NOx-smoke trade-off to limit diesel DI combustion emissions. Dimethyl ether (DME) fuel is applicable in DI compression ignition engines and its high fuel oxygen produces near-smoke-free emissions. Moreover, the addition of a premixed fuel can improve mixture homogeneity and minimize the DI fuel energy demands lessening injection durations. For this technique, a low reactivity fuel such as ethanol is essential to avoid early autoignition in high compression ratio engines. In this work, empirical experiments of dual fuel operation have been conducted using premixed ethanol with high-pressure direct injection DME.
Technical Paper

A Comparative Study on the Ignition Mechanism of Multi-site Ignition and Continuous Discharge Strategy

2021-09-21
2021-01-1162
Advanced combustion engines dominate all automotive applications. Future high efficiency clean combustion engines can contribute significantly to sustainable transportation. Effective ignition strategies are studied to enable lean and diluted combustion under considerably high-density mixture and strong turbulences, for improving the efficiency and emissions of future combustion engines. Continuous discharge and multi-site ignition strategies have been proved to be effective to stabilize the combustion process under lean and EGR diluted conditions. Continuous discharge strategy uses a traditional sparkplug with a single spark gap and multiple ignition coil packs. The ignition coil packs operate under a specific time offset to realize a continuous discharge process with a prolonged discharge duration. Multi-site ignition strategy also uses multiple ignition coil packs.
Technical Paper

Numerical Investigation on NO to NO2 Conversion in a Low-Temperature Combustion CI Engine

2021-04-06
2021-01-0506
Low temperature combustion (LTC) has been proved to overcome the trade-off between NOx and soot emissions in direct injection compression ignition engines. However, the lowered NOx emissions are accompanied by high hydrocarbon and CO emissions. Moreover, the NOx emissions under LTC has much higher NO2 concentrations compared with traditional high temperature combustion conditions. Experimental investigations have been carried out to show the hydrocarbon impact on NOx emissions and NO-NO2 conversion under various engine operation conditions, but the mechanism is less understood. The article includes numerical studies of the impact of hydrocarbons in the in-cylinder conversion of NO to NO2 during low temperature conditions in a compression ignition engine. In the present work, a stochastic reactor model with detailed chemical kinetics is utilized to investigate the reaction pathways during the NOx reduction and NO2 conversion processes.
Technical Paper

Preliminary Testing of n-Butanol HCCI on High Compression Ratio Diesel Engines

2019-04-02
2019-01-0577
The control of combustion phasing in homogeneous charge compression ignition (HCCI) combustion is investigated with neat n-butanol in this work. HCCI is a commonly researched combustion mode, owing to its improved thermal efficiency over conventional gasoline combustion, as well as its lower nitrogen oxide (NOx) and particulate matter emissions compared to those of diesel combustion. Despite these advantages, HCCI lacks successful widespread implementation with conventional fuels, primarily due to the lack of effective combustion phasing control. In this preliminary study, chemical kinetic simulations are conducted to study the auto-ignition characteristics of n-butanol under varied background pressures, temperatures, and dilution levels using established mechanisms in CHEMKIN software. Increasing the pressure or temperature lead to a shorter ignition delay, whereas increasing the dilution by the application of exhaust gas recirculation (EGR) leads to a longer ignition delay.
Technical Paper

An Investigation on the Regeneration of Lean NOx Trap Using Ethanol and n-Butanol

2019-04-02
2019-01-0737
Reduction of nitrogen oxides (NOx) in lean burn and diesel fueled Compression Ignition (CI) engines is one of the major challenges faced by automotive manufacturers. Lean NOx Trap (LNT) and urea-based Selective Catalytic Reduction (SCR) exhaust after-treatment systems are well established technologies to reduce NOx emissions. However, each of these technologies has associated advantages and disadvantages for use over a wide range of engine operating conditions. In order to meet future ultra-low NOx emission norms, the use of both alternative fuels and advanced after-treatment technology may be required. The use of an alcohol fuel such as n-butanol or ethanol in a CI engine can reduce the engine-out NOx and soot emissions. In CI engines using LNTs for NOx reduction, the fuel such as diesel is utilized as a reductant for LNT regeneration.
Technical Paper

A Fuel Sensitive Ignition Delay Model for Direct Injection Diesel Engine Operating under EGR Diluted Conditions

2018-04-03
2018-01-0231
This empirical work investigates the impacts of thermodynamic parameters, such as pressure and temperature, and fuel properties, such as fuel Cetane number and aromatic contents on ignition delay in diesel engines. Systematic tests are conducted on a single-cylinder research engine to evaluate the ignition delay changes due to the fuel property differences at low, medium and high engine loads under different EGR dilution ratios. The test fuels offer a range of Cetane numbers from 28 to 54.2 and aromatic contents volume ratios from 19.4% to 46.6%. The experimental results of ignition delays are used to derive an ignition delay model modified from Arrhenius’ expression. Following the same format of Arrhenius’ equation, the model incorporates the pressure and temperature effects, and further includes the impacts of intake oxygen concentration, fuel Cetane number and aromatic contents volume ratio on the ignition delay.
Technical Paper

Mode Switching to Improve Low Load Efficiency of an Ethanol-Diesel Dual-Fuel Engine

2017-03-28
2017-01-0771
The dual-fuel application using ethanol and diesel fuels can substantially improve the classical trade-off between oxides of nitrogen (NOx) and smoke, especially at moderate-to-high load conditions. However, at low engine load levels, the use of a low reactivity fuel in the dual-fuel application usually leads to increased incomplete combustion products that in turn result in a significant reduction of the engine thermal efficiency. In this work, engine tests are conducted on a high compression ratio, single cylinder dual-fuel engine that incorporates the diesel direct-injection and ethanol port-injection. Engine load levels are identified, at which, diesel combustion offers better efficiency than the dual-fuel combustion while attaining low NOx and smoke emissions. Thereafter, a cycle-to-cycle based closed-loop controller is implemented for the combustion phasing and engine load control in both the diesel and dual-fuel combustion regimes.
Technical Paper

Fuel Burn Rate Control to Improve Load Capability of Neat n-Butanol Combustion in a Modern Diesel Engine

2016-10-17
2016-01-2301
This research work investigates the control strategies of fuel burn rate of neat n-butanol combustion to improve the engine load capability. Engine tests of homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) with neat n-butanol show promising NOx and smoke emissions; however, the rapid burn rate of n-butanol results in excessive pressure rise rates and limits the engine load capability. A multi-event combustion strategy is developed to modulate the fuel burn rate of the combustion cycle and thus to reduce the otherwise high pressure rise rates at higher engine load levels. In the multi-event combustion strategy, the first combustion event is produced near TDC by the compression ignition of the port injected butanol that resembles the HCCI combustion; the second combustion event occurs near 7~12 degrees after TDC, which is produced by butanol direct injection (DI) after the first HCCI-like combustion event.
Journal Article

Investigation of Fuel Injection Strategies for Direct Injection of Neat n-Butanol in a Compression Ignition Engine

2016-04-05
2016-01-0724
In this study, impacts of neat n-butanol fuel injection parameters on direct injection (DI) compression ignition (CI) engine performance were investigated to gain knowledge for understanding the fuel injection strategies for n-butanol. The engine tests were conducted on a four-stroke single-cylinder DI CI engine with a compression ratio of 18.2:1. The effects of fuel injection pressure (40, 60 and 90 MPa) and injection timing in a single injection strategy were investigated. The results showed that an increase in injection pressure significantly reduced nitrogen oxides (NOx) emissions which is the opposite trend seen in conventional diesel combustion. The parallel use of a higher injection pressure and retarded injection timing was a proposed method to reduce NOx and cylinder pressure rise rate simultaneously. NOx was further reduced by using exhaust gas recirculation (EGR) while keeping near zero soot emissions.
Journal Article

Experimental Investigation of Diesel-Ethanol Premixed Pilot-Assisted Combustion (PPAC) in a High Compression Ratio Engine

2016-04-05
2016-01-0781
In this work, empirical investigations of the diesel-ethanol Premixed Pilot-Assisted Combustion (PPAC) are carried out on a high compression ratio (18.2:1) single-cylinder diesel engine. The tests focus on determining the minimum ethanol fraction for ultra-low NOx & soot emissions, effect of single-pilot vs. twin-pilot strategies on emissions and ignition controllability, reducing the EGR requirements, enabling clean combustion across the load range and achieving high efficiency full-load operation. The results show that both low NOx and almost zero soot emissions can be achieved but at the expense of higher unburned hydrocarbons. Compared to a single-pilot injection, a twin-pilot strategy reduces the soot emissions significantly and also lowers the NOx emissions, thereby reducing the requirements for EGR. The near-TDC pilot provides excellent control over the combustion phasing, further reducing the need of a higher EGR quantity for phasing control.
Technical Paper

Distributed Electrical Discharge to Improve the Ignition of Premixed Quiescent and Turbulent Mixtures

2016-04-05
2016-01-0706
The present work investigates the efficacy of distributed electrical discharge to increase the ignition volume by means of multipole spark discharge and radio frequency (RF) corona discharge. A range of ignition strategies are implemented to evaluate the efficacy of distributed ignition. The multipole spark igniter design has multiple high-voltage electrodes in close proximity to each other. This distributed spark ignition concept has the ability to generate multiple flame kernels either simultaneously or in a staggered mode. A novel elastic breakdown ignition strategy in responsive distribution (eBIRD) high frequency discharge is also implemented via the multipole igniter. The RF corona discharge is generated through an in-house developed ignition system. A form of distributed ignition is initiated along the streamer filaments.
Technical Paper

Emission Analysis of HCCI Combustion in a Diesel Engine Fueled by Butanol

2016-04-05
2016-01-0749
Advances in engine technology in recent years have led to significant reductions in the emission of pollutants and gains in efficiency. As a facet of investigations into clean, efficient combustion, the homogenous charge compression ignition (HCCI) mode of combustion can improve upon the thermal efficiency and nitrogen oxides emission of conventional spark ignition engines. With respect to conventional diesel engines, the low nitrogen oxides and particulate matter emissions reduce the requirements on the aftertreatment system to meet emission regulations. In this paper, n-butanol, an alcohol fuel with the potential to be derived from renewable sources, was used in a light-duty diesel research engine in the HCCI mode of combustion. Control of the combustion was implemented using the intake pressure and external exhaust gas recirculation. The moderate reactivity of butanol required the assistance of increased intake pressure for ignition at the lower engine load range.
Technical Paper

Heat Release Analysis of Clean Combustion with Ethanol Ignited by Diesel in a High Compression Ratio Engine

2016-04-05
2016-01-0766
The control of nitrogen oxide and smoke emissions in diesel engines has been one of the key researches in both the academia and industry. Nitrogen oxides can be effectively suppressed by the use of exhaust gas recirculation (EGR). However, the introduction of inert exhaust gas into the engine intake is often associated with high smoke emissions. To overcome these issues there have been a number of proposed strategies, one of the more promising being the use of low temperature combustion enabled with heavy EGR. This has the potential to achieve simultaneously low emissions of nitrogen oxide and smoke. However, a quantitative way to identify the transition zone between high temperature combustion and low temperature combustion has still not been fully explored. The combustion becomes even more complicated when ethanol fuel is used as a partial substitution for diesel fuel.
Technical Paper

Hydrocarbon Speciation of Diesel Ignited Ethanol and Butanol Engines

2016-04-05
2016-01-0773
Dual fuel applications of alcohol fuels such as ethanol or butanol through port injection with direct injection of diesel can be effective in reduction of NOx. However, these dual fuel applications are usually associated with an increase in the incomplete combustion products such as hydrocarbons (HC), carbon monoxide (CO), and hydrogen (H2) emissions. An analysis of these products of incomplete combustion and the resulting combustion efficiency penalty was made in the diesel ignited alcohol combustion modes. The effect of EGR application was evaluated using ethanol and butanol as the port injected fuel, with varying alcohol fractions at the mid-load condition (10 -12 bar IMEP). The impact of varying the engine load (5 bar to 19 bar IMEP) in the diesel ignited ethanol mode on the incomplete combustion products was also studied. Emission measurements were taken and the net fuel energy loss as a result of the incomplete combustion was estimated.
Technical Paper

Suitability Study of n-Butanol for Enabling PCCI and HCCI and RCCI Combustion on a High Compression-ratio Diesel Engine

2015-09-01
2015-01-1816
This work investigates the suitability of n-butanol for enabling PCCI, HCCI, and RCCI combustion modes to achieve clean and efficient combustion on a high compression ratio (18.2:1) diesel engine. Systematic engine tests are conducted at low and medium engine loads (6∼8 bar IMEP) and at a medium engine speed of 1500 rpm. Test results indicate that n-butanol is more suitable than diesel to enable PCCI and HCCI combustion with the same engine hardware. However, the combustion phasing control for n-butanol is demanding due to the high combustion sensitivity to variations in engine operating conditions where engine safety concerns (e.g. excessive pressure rise rates) potentially arise. While EGR is the primary measure to control the combustion phasing of n-butanol HCCI, the timing control of n-butanol direct injection in PCCI provides an additional leverage to properly phase the n-butanol combustion.
Journal Article

Impact of Fuelling Techniques on Neat n-Butanol Combustion and Emissions in a Compression Ignition Engine

2015-04-14
2015-01-0808
This study investigated neat n-butanol combustion, emissions and thermal efficiency characteristics in a compression ignition (CI) engine by using two fuelling techniques - port fuel injection (PFI) and direct injection (DI). Diesel fuel was used in this research for reference. The engine tests were conducted on a single-cylinder four-stroke DI diesel engine with a compression ratio of 18.2 : 1. An n-Butanol PFI system was installed to study the combustion characteristics of Homogeneous Charge Compression Ignition (HCCI). A common-rail fuel injection system was used to conduct the DI tests with n-butanol and diesel. 90 MPa injection pressure was used for the DI tests. The engine was run at 1500 rpm. The intake boost pressure, engine load, exhaust gas recirculation (EGR) ratio, and DI timing were independently controlled to investigate the engine performance.
Journal Article

Active Injection Control for Enabling Clean Combustion in Ethanol-Diesel Dual-Fuel Mode

2015-04-14
2015-01-0858
In this work, an active injection control strategy is developed for enabling clean and efficient combustion on an ethanol-diesel dual-fuel engine. The essence of this active injection control is the minimization of the diffusion burning and resultant emissions associated with the diesel injection while maintaining controllability over the ignition and combustion processes. A stand-alone injection bench is employed to characterize the rate of injection for the diesel injection events, and a regression model is established to describe the injection timings and injector delays. A new combustion control parameter is proposed to characterize the extent of diffusion burning on a cycle-to-cycle basis by comparing the modelled rate of diesel injection with the rate of heat release in real time. The test results show that the proposed parameter, compared with the traditional ignition delay, better correlates to the enabling of low NOx and low smoke combustion.
X