Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Experimental and Modeling Study of NH3-SCR on a Hydrocarbon-Poisoned Cu-CHA Catalyst

2023-10-31
2023-01-1659
A urea-selective catalytic reduction (SCR) system is used for the reduction of NOx emitted from diesel engines. Although this SCR catalyst can reduce NOx over a wide temperature range, improvements in NOx conversion at relatively low temperatures, such as under cold-start or low-load engine conditions, are necessary. A close-coupled SCR (cc-SCR), which was set just after the engine exhaust manifold, was developed to address this issue. The temperature of the SCR catalyst increases rapidly owing to the higher exhaust temperatures, and NOx conversion is then enhanced under cold-start conditions. However, since the diesel oxidation catalyst is not installed before the SCR catalyst, hydrocarbon (HC) emissions pass directly through the SCR catalyst and poison it, leading to lower NOx conversion. Therefore, the mechanism of NOx conversion reduction on HC-poisoned SCR catalysts are required to be studied.
Journal Article

Evaluation of Mechanism for EGR Deposit Formation Based on Spatially- and Time-Resolved Scanning-Electron-Microscope Observation

2020-09-15
2020-01-2027
Exhaust gas recirculation (EGR) is widely used in diesel engines to reduce nitrogen oxide emissions. To meet the strict emission regulations, e.g., Real Driving Emissions, the EGR system is required to be used at temperatures lower than the present ones. However, under cool conditions, an adhesive deposit forms on the EGR valve or cooler because of the particulate matter and other components present in the diesel exhaust. This causes sticking of the EGR valve or degradation of the heat-exchange performance, which are serious problems. In this study, the EGR deposit formation mechanism was investigated based on spatially- and time-resolved scanning electron microscopy (SEM) observation. The deposit was formed in a custom-made sample line using real exhaust emitted from a diesel engine. The exhaust including soot was introduced into the sample line for 24 h (maximum duration), and the formed deposit was observed using SEM.
Technical Paper

Isocyanic acid hydrolysis and ammonia-SCR reaction over hydrothermally aged Cu-ZSM5

2019-12-19
2019-01-2234
For developing complicated after-treatment equipment for diesel-engine vehicles, such as urea-selective catalytic reduction (urea-SCR) systems, construction of a reaction model that can accurately predict ammonia (NH3) formation from urea is required. Hydrolysis of isocyanic acid (HNCO) is an important intermediate reaction in NH3 formation from urea. In our previous studies [1], a new rate constant for HNCO hydrolysis over fresh Cu-ZSM5 was derived using the measurements of the reaction rate of HNCO hydrolysis with high-purity HNCO formed from cyanuric acid. In this study, the reaction rates of the HNCO hydrolysis and NH3-SCR reactions were measured over a hydrothermally aged Cu-ZSM5 catalyst. A steady-state flow reactor equipped with a Fourier transform infrared spectrometer (FTIR) was employed to obtain the reaction rate of the HNCO hydrolysis and NH3-SCR reactions.
Technical Paper

Effect of exhaust gas composition on EGR deposit formation

2019-12-19
2019-01-2358
Serious problems occur in an exhaust gas recirculation system due to an adhesive hard deposit. It is important to clarify the mechanism of the hard deposit formation to suppress it. In this study, the effect of exhaust gas composition on hard deposit formation was investigated. The amount of the hard deposit formed under various operating conditions while keeping the total hydrocarbon concentration constant was different. The component analyses of the exhaust gas and the hard deposit clarified that polycyclic aromatic hydrocarbon in the exhaust gas strongly affected the hard deposit formation.
Technical Paper

Kinetic Measurements of HNCO Hydrolysis over SCR Catalyst

2018-09-10
2018-01-1764
To meet the strict emission regulations for diesel engines, an advanced processing device such as a Urea-SCR (selective catalytic reduction) system is used to reduce NOx emissions. The Real Driving Emissions (RDE) test, which is implemented in the European Union, will expand the range of conditions under which the engine has to operate [1], which will lead to the construction of a Urea-SCR system capable of reducing NOx emissions at lower and higher temperature conditions, and at higher space velocity conditions than existing systems. Simulations are useful in improving the performance of the urea-SCR system. However, it is necessary to construct a reliable NOx reduction model to use for system design, which covers the expanded engine operation conditions. In the urea-SCR system, the mechanism of ammonia (NH3) formation from injected aqueous urea solution is not clear. Thus, it is important to clarify this mechanism to improve the NOx reduction model.
Journal Article

Kinetic Modeling Study of NOx Conversion Based on Physicochemical Characteristics of Hydrothermally Aged SCR/DPF Catalyst

2017-10-08
2017-01-2386
Diesel engines have better fuel economy over comparable gasoline engines and are useful for the reduction of CO2 emissions. However, to meet stringent emission standards, the technology for reducing NOx and particulate matter (PM) in diesel engine exhaust needs to be improved. A conventional selective catalytic reduction (SCR) system consists of a diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and urea-SCR catalyst. Recently, more stringent regulations have led to the development of SCR systems with a larger volume and increased the cost of such systems. In order to solve these problems, an SCR catalyst-coated DPF (SCR/DPF) is proposed. An SCR/DPF system has lower volume and cost compared to the conventional SCR system. The SCR/DPF catalyst has two functions: combustion of PM and reduction of NOx emissions.
Journal Article

Investigation of Mechanism for Formation of EGR Deposit by in situ ATR-FTIR Spectrometer and SEM

2016-10-17
2016-01-2351
Exhaust gas recirculation (EGR) is widely used in diesel engines to reduce nitrogen oxide (NOx) emissions. However, a lacquer is formed on the EGR valve or EGR cooler due to particulate matter and other components present in diesel exhaust, causing serious problems. In this study, the mechanism of lacquer deposition is investigated using attenuated total reflection Fourier transform infrared spectrometry (ATR-FTIR) and scanning electron microscopy (SEM). Deposition of temperature-dependent lacquers was evaluated by varying the temperature of a diamond prism between 80 and 120 °C in an ATR-FTIR spectrometer integrated into a custom-built sample line, which branched off from the exhaust pipe of a diesel engine. Lacquers were deposited on the diamond prism at 100 °C or less, while no lacquer was deposited at 120 °C. Time-dependent ATR-FTIR spectra were obtained for approximately 2 h from the beginning of the experiment.
Technical Paper

Analysis of NO Formation Characteristics and Control Concepts in Diesel Engines from NO Reaction-Kinetic Considerations

1995-02-01
950215
This paper uses NO Reaction Kinetic to determine NO formation characteristics in diesel engines. The NO formation was calculated by Extended Zel'dovich Reaction Kinetics in a diffusion process. The results show that the NO formation rate is independent of the mixing of the combustion gas, and that internal EGR (combustion gas mixing in a cylinder) has no effect on NO reduction. The paper also shows the potential of two stage combustion, and its effect strongly depends on the time-scale of mixing. Additionally the paper investigates the mechanism of increased NOx emissions in high pressure fuel injection.
Technical Paper

Reduction of Smoke and NOx by Strong Turbulence Generated During the Combustion Process in D.I. Diesel Engines

1992-02-01
920467
This paper presents results of experiments to reduce smoke emitted from direct Injection diesel engines by strong turbulence generated during the combustion process. The turbulence was created by jets of burned gas from an auxiliary chamber installed in the cylinder head. Strong turbulence, which was induced late in the combustion period, enhanced the mixing of air with unburned fuel and soot, resulting in a remarkable reduction of smoke and particulate; NOx did not show any increase with this system, and thermal efficiency was improved at high loads. The paper also shows that the combination of EGR and water injection with this system effectively reduces the both smoke and NOx.
Technical Paper

Catalytic Reduction of NOx in Actual Diesel Engine Exhaust

1992-02-01
920091
Copper ion-exchanged ZSM-5 zeolite catalyst, which reduces nitrogen oxides (NOx) in the presence of oxygen and hydrocarbons, was applied to actual diesel engine exhaust. Copper ion-exchanged ZSM-5 zeolite effectively reduced NOx by 25% in normal engine operation, and by 80% when hydrocarbons in the exhaust were increased. Water in the exhaust gas decreased the NOx reduction efficiency, but oxygen and sulfur appeared to have only a small effect. Maximum NOx reduction was observed at 400°C irrespective of hydrocarbon species, and did not decrease with space velocity up to values of 20,000 1/h. THE PURPOSE of this paper is to evaluate the possibilities and problems in catalytic reduction of NOx in actual diesel engine exhaust. Here, a copper ion-exchanged ZSM-5 zeolite (Cu-Z) catalyst was applied to diesel engine exhaust to examine the dependency of the NOx reduction efficiency on temperature and space velocity. The effects of oxygen, water and hydrocarbons were also examined.
X