Refine Your Search

Topic

Search Results

Technical Paper

Characteristics of Unburned Hydrocarbon Emissions in a Low Compression Ratio DI Diesel Engine

2009-04-20
2009-01-1526
In a DI diesel engine, THC emissions increase significantly with lower compression ratios, a low coolant temperature, or during the transient state. During the transient after a load increase, THC emissions are increased significantly to very high concentrations from just after the start of the load increase until around the 10th cycle, then rapidly decreased until the 20th cycle, before gradually decreasing to a steady state value after 1000 cycles. In the fully-warmed steady state operation with a compression ratio of 16 and diesel fuel, THC is reasonably low, but THC increases with lower coolant temperatures or during the transient period just after increasing the load. This THC increase is due to the formation of over-lean mixture with the longer ignition delay and also due to the fuel adhering to the combustion chamber walls. A low distillation temperature fuel such as normal heptane can eliminate the THC increase.
Technical Paper

Dependence of Ultra-High EGR and Low Temperature Diesel Combustion on Fuel Injection Conditions and Compression Ratio

2006-10-16
2006-01-3386
This research investigates the influences of the injection timing, injection pressure, and compression ratio on the combustion and exhaust emissions in a single cylinder 1.0 L DI diesel engine operating with ultra-high EGR. Longer ignition delays due to either advancing or retarding the injection timing reduced the smoke emissions, but advancing the injection timing has the advantages of maintaining the thermal efficiency and preventing misfiring. Smokeless combustion is realized with an intake oxygen content of only 9-10% regardless of the injection pressure. Reduction in the compression ratio is effective to reduce the in-cylinder temperature and increase the ignition delay as well as to expand the smokeless combustion range in terms of EGR and IMEP. However, the thermal efficiency deteriorates with excessively low compression ratios.
Technical Paper

Chemical-Kinetic Analysis on PAH Formation Mechanisms of Oxygenated Fuels

2003-10-27
2003-01-3190
The thermal cracking and polyaromatic hydrocarbon (PAH) formation processes of dimethyl ether (DME), ethanol, and ethane were investigated with chemical kinetics to determine the soot formation mechanism of oxygenated fuels. The modeling analyzed three processes, an isothermal constant pressure condition, a temperature rising condition under a constant pressure, and an unsteady condition approximating diesel combustion. With the same mole number of oxygen atoms, the DME rich mixtures form much carbon monoxide and methane and very little non-methane HC and PAH, in comparison with ethanol or ethane mixtures. This suggests that the existence of the C-C bond promotes the formation of PAH and soot.
Technical Paper

Combustion Control and Operating Range Expansion With Direct Injection of Reaction Suppressors in a Premixed DME HCCI Engine

2003-03-03
2003-01-0746
Direct injection of various ignition suppressors, including water, methanol, ethanol, 1-propanol, hydrogen, and methane, was implemented to control ignition timing and expand the operating range in an HCCI engine with induced DME as the main fuel. Ultra-low NOx and smoke-less combustion was realized over a wide operating range. The reaction suppressors reduced the rate of low-temperature oxidation and consequently delayed the onset of high-temperature oxidation. Analysis of the chemical kinetics showed a reduction of OH radical in the premixed charge with the suppressors. Among the ignition suppressors, alcohols had a greater impact on OH radical reduction resulting in stronger ignition suppression. Although water injection caused a greater lowering of the temperature, which also suppressed ignition, the strong chemical effect of radical reduction with methanol injection resulted in the larger impact on suppression of oxidation reaction rates.
Technical Paper

Nature of Fundamental Parameters Related to Engine Combustion for a Wide Range of Oxygenated Fuels

2002-10-21
2002-01-2853
The fundamental parameters related to engine combustion and performances, such as, heating value, theoretical air-fuel ratio, adiabatic flame temperature, carbon dioxide (CO2), and nitric oxide (NO) emissions, specific heat and engine thermal efficiency were investigated with computations for a wide range of oxygenated fuels. The computed results showed that almost all of the above combustion-related parameters are closely related to oxygen content in the fuels regardless of the kinds or chemical structures of oxygenated fuels. An interesting finding was that with the increase in oxygen content in the fuels NO emission decreased linearly, and the engine thermal efficiency was almost unchanged below oxygen content of 30 wt-% but gradually decreased above 30 wt-%.
Technical Paper

Low Emission and Knock-Free Combustion with Rich and Lean Biform Mixture in a Dual-Fuel CI Engine with Induced LPG as the Main Fuel

2001-09-24
2001-01-3502
Smokeless and ultra low NOx combustion without knocking in a dual-fuel diesel engine with induced LPG as the main fuel was established with a uniquely developed piston cavity divided by a lip in the sidewall. A small quantity of diesel fuel was directly injected at early compression stroke into the lower part of the cavity as an ignition source for this confined area, and this suppressed explosively rapid combustion just after ignition and spark-knock like combustion at later stage. A combination of the divided cavity, EGR, and intake air throttling was effective to simultaneously eliminate knocking, and reduce THC and NOx significantly.
Technical Paper

Mechanism of NOx Reduction by Ethanol on a Silver-Base Catalyst

2001-05-07
2001-01-1935
Since there is a trade-off relationship between NOx and particulates in exhaust gas emitted from a diesel engine, simultaneous reduction of the amounts of NOx and particulates in a combustion chamber is difficult. However, the amount of particulates produced in the combustion process could be reduced in a state of almost complete combustion, and the amount of NOx produced during the combustion process could be reduced by the use of a catalyst and reducing agent in the exhaust process. It has been demonstrated that the use of ethanol as a reducing agent on a silver-base catalyst in the presence of oxygen is an effective means for reducing NOx, although the mechanism of the reduction has not been elucidated. Therefore, in the present study, an NOx-reduction apparatus was conducted, and model experiments on NOx reduction were carried out in an atmosphere simulating exhaust gas emitted from a diesel engine and at the same catalyst temperature as that in a combustion chamber.
Technical Paper

Time-Resolved Behavior of Unburned Hydrocarbon Components in Diesel Exhaust Under Transient Operations

2001-03-05
2001-01-1259
Time resolved changes in unburned hydrocarbon emissions and their components were investigated in a DI diesel engine with a specially developed gas sampling system and gas chromatography. The tested transient operations include starting and increasing loads. At start-up with high equivalence ratios the total hydrocarbon (THC) at first increased, and after a maximum gradually decreased to reach a steady state value. Reducing the equivalence ratio of the high fueling at start-up and shortening the high fueling duration are effective to reduce THC emissions as long as sufficient startability is maintained. Lower hydrocarbons, mainly C1-C8, were the dominant components of the THC and mainly determined the THC behavior in the transient operations while the proportion of hydrocarbon (HC) components did not significantly change. The unregulated toxic substances, 1,3 butadiene and benzene were detected in small quantities.
Technical Paper

Ultra Low Emissions and High Performance Diesel Combustion with a Combination of High EGR, Three-Way Catalyst, and a Highly Oxygenated Fuel, Dimethoxy Methane (DMM)

2000-06-19
2000-01-1819
Ultra low emissions and high performance combustion was achieved with a combination of high EGR, a three-way catalyst, and a highly oxygenated liquid fuel, neat dimethoxy methane (DMM), in an ordinary DI diesel engine. The smokeless nature of neat DMM effectively allowed stoichiometric diesel combustion by controlling BMEP with EGR. NOx, THC, and CO emissions were reduced with a three-way catalyst. At lower BMEP with excess air, the EGR effectively reduced NOx. High-speed video in a bottom view type engine revealed that luminous flame decreased with increased fuel oxygen content and almost disappeared with DMM.
Technical Paper

Improvements of Diesel Combustion and Emissions with Two-stage Fuel Injection at Different Piston Positions

2000-03-06
2000-01-1180
The fuel spray distribution in a DI diesel engine with pilot injection was actively controlled by pilot and main fuel injections at different piston positions to prevent the main fuel injection from hitting the pilot flame. A CFD analysis demonstrated that the movement of the piston with a cavity divided by a central lip along the center of the sidewall effectively separates the cores of the pilot and main fuel sprays. Experiments showed that an ordinary cavity without the central lip emitted more smoke, while smokeless, low NOx operation was realized with a cavity divided by a central lip even at heavy loads where ordinary operation without pilot injection emits smoke.
Technical Paper

Ultra Low Emission and High Performance Diesel Combustion with Highly Oxygenated Fuel

2000-03-06
2000-01-0231
Significant improvements in exhaust emissions and engine performance in an ordinary DI diesel engine were realized with highly oxygenated fuels. The smoke emissions decreased sharply and linearly with increases in oxygen content and entirely disappeared at an oxygen content of 38 wt-% even at stoichiometric conditions. The NOx, THC, and CO were almost all removed with a three-way catalyst under stoichiometric diesel combustion at both the higher and lower BMEP with the combination of EGR and a three-way catalyst. The engine output for the highly oxygenated fuels was significantly higher than that with the conventional diesel fuel due to the higher air utilization.
Technical Paper

Cycle-to-cycle Transient Characteristics of Diesel Emissions during Starting

1999-10-25
1999-01-3495
Changes in exhaust gas emissions during starting in a DI diesel engine were investigated. The THC after starting increased until around the 50th cycle when the fuel deposited on the combustion chamber showed the maximum, and THC then decreased to reach a steady value after about 1000 cycles when the piston wall temperature became constant. The NOx showed an initial higher peak just after starting, and increased to a steady value after about 1000 cycles. Exhaust odor had a strong correlation with THC, and at the early stage odor was stronger than would be expected from the THC concentration. The THC increased with increased fuel injection amounts, decreased cranking speeds, and fuels with higher viscosity, higher 90% distillation temperature, and lower ignitability.
Technical Paper

Improvement of Diesel Combustion and Emissions with Addition of Various Oxygenated Agents to Diesel Fuels

1996-10-01
962115
The effect of eight kinds of oxygenated agents added to diesel fuels on the combustion and emissions was investigated in a DI diesel engine. The results showed significant smoke and particulate suppression without increases in NOx with every oxygenated agent. The emissions decreased linearly with increasing oxygen content in the fuels, almost regardless of the kind of oxygenated agent. The improvement in smoke and particulate emissions with the oxygenated agent addition was more significant for lower volatility fuels. Combustion analysis with the two-dimensional two color method showed that soot concentration in the flame during the combustion process decreased with the addition of the oxygenated agent while the flame temperature distribution was almost unchanged.
Technical Paper

Simultaneous Reductions in Diesel NOx and Smoke Emissions with Aqueous Metal-Salt Solutions Directly Injected into the Combustion Chamber

1996-05-01
961164
The effect of several aqueous metal-salt solutions on NOx and smoke lowering in an IDI diesel engine were examined. The solutions were directly injected into a divided chamber independent of the fuel injection. The results showed that significant lowering in NOx and smoke over a wide operation range could be achieved simultaneously with alkali metal solutions which were injected just prior to the fuel injection. With sodium-salt solutions, for instance, NOx decreased by more than 60 % and smoke decreased 50 % below conventional operation. The sodium-salt solution reduced dry soot significantly, while total particulate matter increased with increases in the water soluble fractions.
Technical Paper

Simultaneous Reductions of Smoke and NOx from a DI Diesel Engine with EGR and Dimethyl Carbonate

1995-10-01
952518
Extensive experiments were conducted on a low emission DI diesel engine by using Dimethyl Carbonate (DMC) as an oxygenate fuel additive. The results indicated that smoke reduced almost linearly with fuel oxygen content. Accompanying noticeable reductions of HC and CO were attained, while a small increase in NOx was encountered. The effective reduction in smoke with DMC was maintained with intake charge CO2, which led to low NOx and smoke emissions by the combined use of oxygenated fuel and exhaust gas recirculation (EGR). Further experiments were conducted on an optically accessible combustion bomb and a thermal cracking set-up to study the mechanisms of DMC addition on smoke reduction.
Technical Paper

Analysis of NO Formation Characteristics and Control Concepts in Diesel Engines from NO Reaction-Kinetic Considerations

1995-02-01
950215
This paper uses NO Reaction Kinetic to determine NO formation characteristics in diesel engines. The NO formation was calculated by Extended Zel'dovich Reaction Kinetics in a diffusion process. The results show that the NO formation rate is independent of the mixing of the combustion gas, and that internal EGR (combustion gas mixing in a cylinder) has no effect on NO reduction. The paper also shows the potential of two stage combustion, and its effect strongly depends on the time-scale of mixing. Additionally the paper investigates the mechanism of increased NOx emissions in high pressure fuel injection.
Technical Paper

Significant NOx Reductions with Direct Water Injection into the Sub-Chamber of an IDI Diesel Engine

1995-02-01
950609
The effect of direct water injection into the combustion chamber on NOx reduction in an IDI diesel engine was investigated. The temperature distribution in the swirl chamber was analyzed quantitatively with high speed photography and the two color method. Direct water injection into a swirl chamber prior to fuel injection reduced NOx emission significantly over a wide output range without sacrifice of BSFC. Other emissions were almost unchanged or slightly decreased with water injection. Water injection reduced the flame temperature at the center of the swirl chamber, while the mean gas temperature in the cylinder and the rate of heat release changed little.
Technical Paper

Theory and Experiments on Air-Entrainment in Fuel Sprays and Their Application to Interpret Diesel Combustion Processes

1995-02-01
950447
This paper presents a theory and its experimental validation for air entrainment changes into fuel sprays in DI diesel engines. The theory predicts air entrainment changes for a variety of swirl speeds, number of nozzle holes, nozzle diameters, engine speeds, injection speeds and fuel densities. The formulae of the theory are simple non-dimensional equations, which apply for different sized engines. Experiments were performed to compare theoretical predictions and experimental results in six different engines varying from 85 to 800mm bore. All results showed good agreement with the theoretical predictions for shallow-dish piston engines. However the agreement became poor in the case of deep cavity piston engines. With the theory, it is possible to interpret a variety of combustion phenomena in diesel engines, providing additional understanding of diesel combustion processes.
Technical Paper

Combustion and Emissions in a New Concept DI Stratified Charge Engine with Two-Stage Fuel Injection

1994-03-01
940675
A new concept DISC engine equipped with a two-stage injection system was developed. The engine was modified from a single cylinder DI diesel engine with large cylinder diameter (135mm). Combustion characteristics and exhaust emissions with regular gasoline were examined, and the experiments were also made with gasoline-diesel fuel blends with higher boiling temperatures and lower octane numbers. To realize stratified mixture distribution in combustion chamber flexibly, the fuel was injected in two-stages: the first stage was before the compression stroke to create a uniform premixed lean mixture and the second stage was at the end of the compression stroke to maintain stable ignition and faster combustion. In this paper, the effect of the two-stage injection on combustion and exhaust emissions were analyzed under several operating conditions.
Technical Paper

Formation Process of SOF in the Combustion Chamber of IDI Diesel Engines

1993-10-01
932799
Exhaust Particulate emitted from diesel engines is a serious problem form the point of view of the environment and energy saving. Exhaust particulate is consist of dry soot and SOF (soluble organic fraction). To clarify the formation process of SOF in the combustion chamber of diesel engines, first lower temperature column condensed method was investigated. The gas from combustion chamber was collected to the sampling column using this method, and the cracked as well as the condensation polymerized components were analyzed with gas chromatography. The sampling condition of the low temperature column condensation method are length of condensation column 600mm, cooling temperature 198K, and dilution ratio 5. The diesel fuel injected into the combustion chamber, first cracks into lower boiling point hydrocarbons, this is followed by dehydrogenation and formation of benzene ring compounds through condensation polymerization. This is followed by the formation of PAH.
X