Refine Your Search

Topic

Search Results

Standard

Multiposition Small Engine Exhaust System Fire Ignition Suppression

2020-10-06
CURRENT
J335_202010
This SAE Recommended Practice establishes equipment and test procedures for determining the performance of spark arrester exhaust systems of multiposition small engines (<19 kW) used in portable applications, including hand-held, hand-guided, and backpack mounted devices. It is not applicable to spark arresters used in vehicles or stationary equipment.
Standard

Spark Arrester Test Carbon

2013-03-26
HISTORICAL
J997_201303
This SAE Standard establishes physical properties required of SAE Coarse Test Carbon and SAE Fine Test Carbon and establishes test methods to ensure that these requirements are met.
Standard

Multiposition Small Engine Exhaust System Fire Ignition Suppression

2012-10-23
HISTORICAL
J335_201210
This SAE Recommended Practice establishes equipment and test procedures for determining the performance of spark arrester exhaust systems of multiposition small engines (<19 kW) used in portable applications, including hand-held, hand-guided, and backpack mounted devices. It is not applicable to spark arresters used in vehicles or stationary equipment.
Standard

Flywheels for Single-Plate Spring-Loaded Clutches

2012-05-31
CURRENT
J618_201205
This SAE Recommended Practice applies to flywheels for dry spring-loaded clutches used on internal combustion engines. Figure 1 and Tables 1, 2, and 3 report information currently used in the industry. Clutches requiring other dimensions are also manufactured. Dimensions given are primarily for single-plate clutches. Flywheels for two plate clutches have the same dimensions if an adaptor for the intermediate plate and second driven disc is supplied with the clutch. If instead the flywheel is to be extended to adapt the intermediate plate and second driven member, consult the clutch manufacturer for the required J dimension and drive arrangements for the intermediate plate. See SAE J1806 for flywheels for size 14 and 15.5 two plate pull-type clutches.
Standard

Crankcase Emission Control Test Code

2012-01-23
CURRENT
J900_201201
The purpose of this SAE STandard is to provide standard test procedures for crankcase emission control systems and/or devices. The procedures included are for determining: a. The flow rate of the blowby of an engine; b. The flow rates through the crankcase emission control system inlet and outlet. This code is written to cover crankcase emission control systems which are designed to reduce the emission of engine blowby gases to the atmosphere. The code includes the following sections: 3. Definitions and Terminology; 4. Test Equipment; 5. Test Procedures; 6. Information and Data to be Recorded; 7. Data Analysis; 8. Presentation of Information and Data.
Standard

Constant Volume Sampler System for Exhaust Emissions Measurement

2011-09-06
CURRENT
J1094_201109
This SAE Information Report describes uniform laboratory techniques for employing the constant volume sampler (CVS) system in measuring various constituents in the exhaust gas of gasoline engines installed on passenger cars and light trucks. The techniques described relate particularly to CVS systems employing positive displacement pumps. This is essentially an almost obsolete system relative to usage in industry and government. Current practice favors the use of a critical flow venturi to measure the diluted exhaust flow. In some areas of CVS practice, alternative procedures are given as a guide toward development of uniform laboratory techniques. The report includes the following sections: Introduction 1. Scope 2. References 2.1 Applicable Publications 3. Definitions 4. Test Equipment 4.1 Sampler 4.2 Bag Analysis 4.3 Modal Analysis 4.4 Instrument Operating Procedures 4.5 Supplementary Discussions 4.6 Tailpipe Connections 4.7 Chassis Dynamometer 5.
Standard

Emissions Terminology and Nomenclature

2011-09-06
CURRENT
J1145_201109
This SAE Recommended Practice applies to nomenclature of emissions and emissions reduction apparatus as applied to various engines and vehicles. Modifying adjectives are omitted in some cases for the sake of simplicity. However, it is considered good practice to use such adjectives when they add to clarity and understanding.
Standard

Impact of Alternative Fuels on Engine Test and Reporting Procedures

2011-09-06
CURRENT
J1515_201109
The guidelines in this SAE Information Report are directed at laboratory engine dynamometer test procedures with alternative fuels, and they are applicable to four-stroke and two-stroke cycle spark ignition (SI) and diesel (CI) engines (naturally aspirated or pressure charged, with or without charge air cooling). A brief overview of investigations with some alternative fuels can be found in SAE J1297. Other SAE documents covering vehicle, engine, or component testing may be affected by use of alternative fuels. Some of the documents that may be affected can be found in Appendix A. Guidelines are provided for the engine power test code (SAE J1349) in Appendix D. The principles of these guidelines may apply to other procedures and codes, but the effects have not been investigated. The report is organized into four technical sections, each dealing with an important aspect of testing or reporting of results when using alternative fuels.
Standard

Thrust Washers – Design and Application

2011-06-13
CURRENT
J924_201106
This SAE Standard presents the basic size and tolerance information for the design and manufacture of thrust washers. In most cases, the standard employs nominal figures in both metric and inch-pound units and, therefore, does not necessarily provide exact equivalents.
Standard

Measurement of Intake Air or Exhaust Gas Flow of Diesel Engines

2011-06-13
CURRENT
J244_201106
This procedure establishes recommendations on the measurement of diesel engine intake air flow under steady-state test conditions. The measurement methods discussed have been limited to metering systems and associated equipment found in common usage in the industry, specifically, nozzles, laminar flow devices, and vortex shedding. The procedure establishes accuracy goals as well as explains proper usage of equipment. The recommendations concerning diesel engine exhaust mass flow measurements are minimal in scope.
Standard

Split Type Bushings – Design and Application

2011-06-13
CURRENT
J835_201106
This SAE Standard presents the standard sizes, important dimensions, specialized measurement techniques, and tolerances for split type bushings. Both SI and inch sizes are shown; their dimensions are not exact equivalents. New designs shall use SI units. Unless specifically stated as ±, all tolerances are total.
Standard

Instrumentation and Techniques for Exhaust Gas Emissions Measurement

2011-06-10
CURRENT
J254_201106
This SAE Recommended Practice establishes uniform laboratory techniques for the continuous and bag-sample measurement of various constituents in the exhaust gas of the gasoline engines installed in passenger cars and light-duty trucks. The report concentrates on the measurement of the following components in exhaust gas: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2), and nitrogen oxides (NOx). NOx is the sum of nitric oxide (NO) and nitrogen dioxide (NO2). A complete procedure for testing vehicles may be found in SAE J1094. This document includes the following sections: 1. Scope 2. References 3. Emissions Sampling Systems 4. Emissions Analyzers 5. Data Analysis 6. Associated Test Equipment 7. Test Procedures
Standard

Diesel Engine Emission Measurement Procedure

2002-10-21
CURRENT
J1003_200210
This SAE Recommended Practice is intended for use as a test procedure to determine the gaseous emission level of diesel engines. Its purpose is to provide a map of an engine's emissions characteristics which, through use of the proper weighing factors, can be used as a measure of that engine's emission levels under various applications. The emission results for hydrocarbons, nitrogen oxides, carbon monoxide, and carbon dioxide are expressed in units of grams per kilowatt hour (grams/brake horsepower hour) and represent the mass rate of emissions per unit of work accomplished. The emissions are measured in accordance with SAE Recommended Practices J177, J215, and J244 using nondispersive infrared equipment for CO and CO2, a heated flame ionization analyzer for HC, and a high performance NDIR or a chemiluminescence analyzer for NO{sub}x. All emissions are measured during steady-state engine operation.
Standard

Instrumentation and Techniques for Vehicle Refueling Emissions Measurement

2002-10-21
CURRENT
J1045_200210
This SAE Recommended Practice describes a procedure for measuring the hydrocarbon emissions occurring during the refueling of passenger cars and light trucks. It can be used as a method for investigating the effects of temperatures, fuel characteristics, etc., on refueling emissions in the laboratory. It also can be used to determine the effectiveness of evaporative emissions control systems to control refueling emissions. For this latter use, standard temperatures, fuel volatility, and fuel quantities are specified.
Standard

Emissions Terminology and Nomenclature

2002-10-21
HISTORICAL
J1145_200210
This SAE Recommended Practice applies to nomenclature of emissions and emissions reduction apparatus as applied to various engines and vehicles. Modifying adjectives are omitted in some cases for the sake of simplicity. However, it is considered good practice to use such adjectives when they add to clarity and understanding.
Standard

Continuous Hydrocarbon Analysis of Diesel Emissions

2002-10-21
CURRENT
J215_200210
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented. This SAE Recommended Practice provides for the continuous measurement of the hydrocarbon concentration in diesel exhaust.
Standard

Measurement of Carbon Dioxide, Carbon Monoxide, and Oxides of Nitrogen in Diesel Exhaust

2002-10-21
CURRENT
J177_200210
The method presented applies to the analysis of the indicated constituents in diesel engine exhaust, or vehicles using diesel engines, when operating at steady-state conditions. The measurements of carbon monoxide, carbon dioxide, and nitric oxide are based on continuous sampling and analysis by nondispersive infrared (NDIR) methods. Measurement of total oxides of nitrogen by chemiluminescence and NDIR methods is discussed. This SAE Recommended Practice provides for the measurement of carbon dioxide, carbon monoxide, and oxides of nitrogen in diesel exhaust.
Standard

Engine Testing with Low-Temperature Charge Air-cooler Systems in a Dynamometer Test Cell

2002-10-21
HISTORICAL
J1937_200210
The methods presented in this SAE Recommended Practice apply to the controlled testing of low-temperature charge, air-cooled, heavy-duty diesel engines. This document encompasses the following main sections: a Definitions of pertinent parameters b Vehicle testing to determine typical values for these parameters c Description of the setup and operation of the test cell system d Validation testing of the test cell system While not covered in this document, computer modeling of the vehicle engine cooler system is recognized as a valid tool to determine cooler system performance and could be utilized to supplement the testing described. However, adequate in-vehicle testing should be performed to validate the model before it is used for the purposes outlined. The procedure makes references to test cycles that are prescribed by the United States Environmental Protection Agency (US EPA) and are contained in the Code of Federal Regulations.
Standard

Determination of Sulfur Compounds in Automotive Exhaust

2002-10-21
CURRENT
J1280_200210
This SAE Information Report deals exclusively with the determination of sulfur compounds in automotive exhaust. Engine operating cycles and interpretation of results are not covered. Methods described in detail are those that have been or are being used by various laboratories. None are specifically recommended as superior to others. Since intensive measurement of automotive sulfur compounds is a relatively new activity, methods and practices have changed rapidly. Some methods are more experimental than others and are so noted in the test.
X