Refine Your Search

Topic

Author

Search Results

Technical Paper

Numerical Analysis of Mixing of Bio-Hybrid Fuels in a Direct Injection Engine with a Pre-Chamber Ignition System

2024-04-09
2024-01-2619
Numerical analyses of the liquid fuel injection and subsequent fuel-air mixing for a high-tumble direct injection engine with an active pre-chamber ignition system at operation conditions of 2000 RPM are presented. The Navier-Stokes equations for compressible in-cylinder flow are solved numerically using a hierarchical Cartesian mesh based finite-volume method. To determine the fuel vapor before ignition large-eddy flow simulations are two-way coupled with the spray droplets in a Lagrangian Particle Tracking (LPT) formulation. The combined hierarchical Cartesian mesh ensures efficient usage of high performance computing systems through solution adaptive refinement and dynamic load balancing. Computational meshes with approximately 170 million cells and 1.0 million spray parcels are used for the simulations.
Technical Paper

Development of Phenomenological Models for Engine-Out Hydrocarbon Emissions from an SI DI Engine within a 0D Two-Zone Combustion Chamber Description

2021-09-05
2021-24-0008
The increasingly stringent limits on pollutant emissions from internal combustion engine-powered vehicles require the optimization of advanced combustion systems by means of virtual development and simulation tools. Among the gaseous emissions from spark-ignition engines, the unburned hydrocarbon (HC) emissions are the most challenging species to simulate because of the complexity of the multiple physical and chemical mechanisms that contribute to their emission. These mechanisms are mainly three-dimensional (3D) resulting from multi-phase physics - e.g., fuel injection, oil-film layer, etc. - and are difficult to predict even in complex 3D computational fluid-dynamic (CFD) simulations. Phenomenological models describing the relationships between the physical-chemical phenomena are of great interest for the modeling and simplification of such complex mechanisms.
Technical Paper

Gasoline Particulate Filter Characterization Focusing on the Filtration Efficiency of Nano-Particulates Down to 10 nm

2020-09-15
2020-01-2212
With Post Euro 6 emission standards in discussion, stricter particulate number (PN) targets as well as a decreased PN cut-off size from 23 to 10 nm are expected. Sub-23 nm particulates are considered particularly harmful to human health, but are not yet taken into account in the current vehicle certification process. Not considering sub-23 nm particulates during the development process could lead to significant additional efforts for Original Equipment Manufacturers (OEM) to comply with future Post Euro 6 PN emission limits. It is therefore essential to increase knowledge about the formation and filtration of particulates below 23 nm. In the present study, a holistic Gasoline Particulate Filter (GPF) characterization has been carried out on an engine test bench under varying boundary conditions and on a burner bench with a novel ash loading methodology.
Technical Paper

Efficient Test Bench Operation with Early Damage Detection Systems

2019-09-09
2019-24-0192
The efficient operation of powertrain test benches in research and development is strongly influenced by the state of “health” of the functional test object. Hence, the use of Early Damage Detection Systems (EDDS) with Unit Under Test (UUT) monitoring is becoming increasingly popular. An EDDS should primarily avoid total loss of the test object and ensure that damaged parts are not completely destroyed, and can still be inspected. Therefore, any abnormality from the standard test object behavior, such as an exceeding of predefined limits, must be recognized at an early testing time, and must lead to a shutdown of the test bench operation. With sensors mounted on the test object, it is possible to isolate the damage cause in the event of its detection. Advanced EDDS configurations also optimize the predefined limits by learning new shutdown values according to the test object behavior within a very short time.
Technical Paper

Experimental Investigations on the Influence of Valve Timing and Multi-Pulse Injection on GCAI Combustion

2019-04-02
2019-01-0967
Gasoline Controlled Auto-Ignition (GCAI) combustion, which can be categorized under Homogeneous Charge Compression Ignition (HCCI), is a low-temperature combustion process with promising benefits such as ultra-low cylinder-out NOx emissions and reduced brake-specific fuel consumption, which are the critical parameters in any modern engine. Since this technology is based on uncontrolled auto-ignition of a premixed charge, it is very sensitive to any change in boundary conditions during engine operation. Adopting real time valve timing and fuel-injection strategies can enable improved control over GCAI combustion. This work discusses the outcome of collaborative experimental research by the partnering institutes in this direction. Experiments were performed in a single cylinder GCAI engine with variable valve timing and Gasoline Direct Injection (GDI) at constant indicated mean effective pressure (IMEP). In the first phase intake and exhaust valve timing sweeps were investigated.
Technical Paper

Characterization of Oxygenated-Fuel Combustion by Quantitative Multiscalar SRS/LIF Measurements in a Diesel-Like Jet

2018-09-28
2018-01-5037
Due to experimental challenges, combustion of diesel-like jets has rarely been characterized by laser-based quantitative multiscalar measurements. In this work, recently developed laser diagnostics for combustion temperature and the concentrations of CO, O2, and NO are applied to a diesel-like jet, using a highly oxygenated fuel. The diagnostic is based on spontaneous Raman scattering (SRS) and laser-induced fluorescence (LIF) methods. Line imaging yields multiscalar profiles across the jet cross section. Measurements turn out to be particularly accurate, because near-stoichiometric combustion occurs in the central region of the jet. Thereby, experimental cross-influences by light attenuation and interfering emissions are greatly reduced compared to the combustion of conventional, sooting diesel fuel jets. This is achieved by fuel oxygenation and enhanced premixing.
Technical Paper

Investigation of Oil Sources in the Combustion Chamber of Direct Injection Gasoline Engines

2018-09-10
2018-01-1811
To reduce hydrocarbon and particle emissions as well as irregular combustion phenomena, the identification and quantification of possible oil sources in the combustion chamber of the direct injection gasoline engine are of main interest. The aim of this research activity is to fundamentally investigate the formation of locally increased lubricating oil concentration in the combustion chamber. For this purpose, the oil sources are considered separately from each other and divided into two groups - piston/compression ring and lubricating film on the liner. The associated oil emissions and their influence on the engine combustion process are the core of the investigations.
Technical Paper

Comparing Large Eddy Simulation of a Reacting Fuel Spray with Measured Quantitative Flame Parameters

2018-09-10
2018-01-1720
In order to reduce engine out CO2 emissions, it is a main subject to find new alternative fuels from renewable sources. For identifying the specification of an optimized fuel for engine combustion, it is essential to understand the details of combustion and pollutant formation. For obtaining a better understanding of the flame behavior, dynamic structure large eddy simulations are a method of choice. In the investigation presented in this paper, an n-heptane spray flame is simulated under engine relevant conditions starting at a pressure of 50 bar and a temperature of 800 K. Measurements are conducted at a high-pressure vessel with the same conditions. Liquid penetration length is measured with Mie-Scatterlight, gaseous penetration length with Shadowgraphy and lift-off length as well as ignition delay with OH*-Radiation. In addition to these global high-speed measurement techniques, detailed spectroscopic laser measurements are conducted at the n-heptane flame.
Technical Paper

Influence of Vehicle Operators and Fuel Grades on Particulate Emissions of an SI Engine in Dynamic Cycles

2018-04-03
2018-01-0350
With the implementation of the “Worldwide harmonized Light duty Test Procedure” (WLTP) and the highly dynamic “Real Driving Emissions” (RDE) tests in Europe, different engineering methodologies from virtual calibration approaches to Engine-in-the-loop (EiL) methods have to be considered to define and calibrate efficient exhaust gas aftertreatment technologies without the availability of prototype vehicles in early project phases. Since different types of testing facilities can be used, the effects of test benches as well as real and virtual vehicle operators have to be determined. Moreover, in order to effectively reduce harmful emissions, the reproducibility of test cycles is essential for an accurate and efficient application of exhaust gas aftertreatment systems and the calibration of internal combustion engines.
Journal Article

Improving Engine Efficiency and Emission Reduction Potential of HVO by Fuel-Specific Engine Calibration in Modern Passenger Car Diesel Applications

2017-10-08
2017-01-2295
The optimization study presented herein is aimed to minimize the fuel consumption and engine-out emissions using commercially available EN15940 compatible HVO (Hydrogenated Vegetable Oil) fuel. The investigations were carried out on FEV’s 3rd generation HECS (High Efficiency Combustion System) multi-cylinder engine (1.6L, 4 Cylinder, Euro 6). Using a global DOE approach, the effects of calibration parameters on efficiency and emissions were obtained and analyzed. This was followed by a global optimization procedure to obtain a dedicated calibration for HVO. The study was aiming for efficiency improvement and it was found that at lower loads, higher fractions of low pressure EGR in combination with lower fuel injection pressures were favorable. At higher loads, a combustion center advancement, increase of injection pressure and reduced pilot injection quantities were possible without exceeding the noise and NOx levels of the baseline Diesel.
Technical Paper

Effects of Biofuels on the Mixture Formation and Ignition Process in Diesel-Like Jets

2017-10-08
2017-01-2332
In order to reduce engine out CO2 emissions it is a main subject to find new alternative fuels out of renewable sources. For this paper, several fuels were selected which can be produced out of biomass or with hydrogen which is generated directly via electrolysis with electricity from renewable sources. All fuels are compared to conventional diesel fuel and two diesel surrogates. It is well known that there can be a large effect of fuel properties on mixture formation and combustion, which may result in a completely different engine performance compared to the operation with conventional diesel fuels. Mixture formation and ignition behavior can also largely affect the pollutant formation. The knowledge of the combustion behavior is also important to design new engine geometries or implement new calibrations for an existing engine. The fuel properties of the investigated fuels comprise a large range, for example in case of the derived cetane number, from below 30 up to 100.
Journal Article

Laser-Induced Incandescence Measurements of Tailor-Made Fuels in an Optical Single-Cylinder Diesel Engine

2017-03-28
2017-01-0711
The influence of two oxygenated tailor-made fuels on soot formation and oxidation in an optical single cylinder research diesel engine has been studied. For the investigation a planar laser-induced incandescence (PLII) measurement technique was applied to the engine in order to detect and evaluate the planar soot distribution for the two bio fuels within a laser light sheet. Furthermore the OH* chemiluminescence and broad band soot luminosity was visualized by high speed imaging to compare the ignition and combustion behavior of tested fuels: Two C8 oxygenates, di-n-butylether (DNBE) and 1-octanol. Both fuels have the same molecular formula but differ in their molecular structure. DNBE ignites fast and burns mostly diffusive while 1-octanol has a low cetane number and therefore it has a longer ignition delay but a more homogeneous mixture at time of ignition. The two bio fuels were finally compared to conventional diesel fuel.
Technical Paper

Experimental Investigation of a RCCI Combustion Concept with In-Cylinder Blending of Gasoline and Diesel in a Light Duty Engine

2015-09-06
2015-24-2452
Within this study a dual-fuel concept was experimentally investigated. The utilized fuels were conventional EN228 RON95E10 and EN590 Diesel B7 pump fuels. The engine was a single cylinder Diesel research engine for passenger car application. Except for the installation of the port fuel injection valve, the engine was not modified. The investigated engine load range covered low part load operation of IMEP = 4.3 bar up to IMEP = 14.8 bar at different engine speeds. Investigations with Diesel pilot injection showed that the dual-fuel approach can significantly reduce the soot/NOx-trade-off, but typically increases the HC- and CO-emissions. At high engine load and gasoline mass fraction, the premixed gasoline/air self-ignited before Diesel fuel was injected. Reactivity Controlled Compression Ignition (RCCI) was subsequently investigated in a medium load point at IMEP = 6.8 bar.
Journal Article

Mixture-Formation Analysis by PLIF in an HSDI Diesel Engine Using C8-Oxygenates as the Fuel

2015-04-14
2015-01-0960
With increasing interest in new biofuel candidates, 1-octanol and di-n-butylether (DNBE) were presented in recent studies. Although these molecular species are isomers, their properties are substantially different. In contrast to DNBE, 1-octanol is almost a gasoline-type fuel in terms of its auto-ignition quality. Thus, there are problems associated with engine start-up for neat 1-octanol. In order to find a suitable glow-plug position, mixture formation is studied in the cylinder under almost idle operating conditions in the present work. This is conducted by planar laser-induced fluorescence in a high-speed direct-injection optical diesel engine. The investigated C8-oxygenates are also significantly different in terms of their evaporation characteristics. Thus, in-cylinder mixture formation of these two species is compared in this work, allowing conclusions on combustion behavior and exhaust emissions.
Technical Paper

Performance and Emissions of Lignin and Cellulose Based Oxygenated Fuels in a Compression-Ignition Engine

2015-04-14
2015-01-0910
Lignocellulosic biomass consists of (hemi-) cellulose and lignin. Accordingly, an integrated biorefinery will seek to valorize both streams into higher value fuels and chemicals. To this end, this study evaluated the overall combustion performance of both cellulose- and lignin derivatives, namely the high cetane number (CN) di-n-butyl ether (DnBE) and low CN anisole, respectively. Said compounds were blended both separately and together with EN590 diesel. Experiments were conducted in a single cylinder compression ignition engine, which has been optimized for improved combustion characteristics with respect to low emission levels and at the same time high fuel efficiency. The selected operating conditions have been adopted from previous “Tailor-Made Fuels from Biomass (TMFB)” work.
Technical Paper

Optimization of Diesel Combustion and Emissions with Newly Derived Biogenic Alcohols

2013-10-14
2013-01-2690
Modern biofuels offer the potential to decrease engine out emissions while at the same time contributing to a reduction of greenhouse gases produced from individual mobility. In order to deeply investigate and improve the complete path from biofuel production to combustion, in 2007 the cluster of excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University. Since then, a whole variety of possible fuel candidates have been identified and investigated. In particular oxygenated fuels (e.g. alcohols, furans) have proven to be beneficial regarding the particulate matter (PM)/ NOx trade-off [1, 2, 3] in diesel-type combustion. Alcohols that provide a longer ignition delay than diesel might behave even better with regard to this trade-off due to higher homogenization of the mixture. Recent studies carried out within the Cluster of Excellence have discovered new pathways to derive 1-octanol from biomass [4], which features a derived cetane number (DCN) of 39.
Technical Paper

Tailor-Made Fuels from Biomass: Influence of Molecular Structures on the Exhaust Gas Emissions of Compression Ignition Engines

2013-10-07
2013-36-0571
In order to deeply investigate and improve the complete path from biofuel production to combustion, the cluster of excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University in 2007. Recently, new pathways have been discovered to synthesize octanol [1] and di-n-butylether (DNBE). These molecules are identical in the number of included hydrogen, oxygen and carbon atoms, but differ in the molecular structure: for octanol, the oxygen atom is at the end of the molecule, whereas for DNBE it is located in the middle. In this paper the utilization of octanol and DNBE in a state-of-the-art single cylinder diesel research engine will be discussed. The major interest has been on engine emissions (NOx, PM, HC, CO, noise) compared to conventional diesel fuel.
Technical Paper

Influence of the Combination of Fuel Properties for a DI-Diesel Engine Under Partly Homogeneous Combustion

2013-04-08
2013-01-1685
Partly homogeneous combustion (PHC) can assist the reduction of the engine-out emissions but its influence is limited by using conventional diesel fuel. To verify whether alternatively designed fuels can help to improve the PHC performance, the impact of different fuel properties in combination with engine control levers have been studied. Based on single cylinder heavy duty direct injection diesel engine (DIDE) test results with different diesel and diesel-like fuels, operating under partly homogeneous combustion conditions, the impact of the combination of the fuel properties were investigated. The fuel matrix was designed such that the fuel properties varied in sufficiently large ranges, in order to be able to detect the impact of the properties at the selected operating points. A statistical principal component analysis (PCA) has been applied to the fuel matrix to specify the interrelationship between the fuel properties, as well as to derive the most independent fuel properties.
Journal Article

Thermal Shock Protection for Diesel Particulate Filters

2011-12-15
2011-01-2429
During a thermal regeneration of a Diesel particulate filter (DPF) the temperature inside the DPF may raise above critical thresholds in an uncontrolled way (thermal shock). Especially driving conditions with a comparable low exhaust gas mass flow and high oxygen content like idle speed may create a thermal shock. This paper presents a concept for an ECU software structure to prevent the DPF from reaching improper temperatures and the methodology in order to calibrate this ECU structure. The concept deals in general with a closed-loop control of the exhaust gas air-fuel-ratio during the critical engine operation phases. Those critical operation phases are identified at the engine test bench during “Drop-to-Idle” and “Drop-to-Overrun” experiments. The experiments show that those phases are critical having on the one hand a low exhaust gas mass flow and on the other hand a high oxygen percentage in the exhaust gas.
Technical Paper

Simulation and Optical Analysis of Oil Dilution in Diesel Regeneration Operation

2011-08-30
2011-01-1844
High levels of exhaust temperature or rich mixtures are necessary for the regeneration of today's diesel particulate filters or NOx catalysts. Therefore, late main injection or post injection is an effective strategy but leads to the well-known problem of lubricating oil dilution depending on the geometry, rail pressure and injection strategy. In this paper a method is developed to simulate fuel entrainment into the lubricating oil wall film in the diesel combustion chamber to predict oil dilution in an early design stage prior to hardware availability for durability testing. The simulation method integrates a newly developed droplet-film interaction model and is compared to results of an optical single-cylinder diesel engine and a similar thermodynamic single-cylinder test engine. Phenomena of diesel post injection like igniting early post injection or split post injections with short energizing times are considered in this paper.
X