Refine Your Search

Search Results

Technical Paper

Modeling of piston pin rotation in a large bore gas engine

2023-09-29
2023-32-0161
In an engine system, the piston pin is subjected to high loading and severe lubrication conditions, and pin seizures still occur during new engine development. A better understanding of the lubricating oil behavior and the dynamics of the piston pin could lead to cost- effective solutions to mitigate these problems. However, research in this area is still limited due to the complexity of the lubrication and the pin dynamics. In this work, a numerical model that considers structure deformation and oil cavitation was developed to investigate the lubrication and dynamics of the piston pin. The model combines multi-body dynamics and elasto-hydrodynamic lubrication. A routine was established for generating and processing compliance matrices and further optimized to reduce computation time and improve the convergence of the equations. A simple built-in wear model was used to modify the pin bore and small end profiles based on the asperity contact pressures.
Technical Paper

Modeling the Three Piece Oil Control Ring Dynamics and Oil Transport in Internal Combustion Engines

2021-04-06
2021-01-0345
Three-piece oil control rings (TPOCR) are widely used in the majority of modern gasoline engines and they are critical for lubricant regulation and friction reduction. Despite their omnipresence, the TPOCRs’ motion and sealing mechanisms are not well studied. With stricter emission standards, gasoline engines are required to maintain lower oil consumption limits, since particulate emissions are strongly correlated with lubricant oil emissions. This piqued our interest in building a numerical model coupling TPOCR dynamics and oil transport to explain the physical mechanisms. In this work, a 2D dynamics model of all three pieces of the ring is built as the main frame. Oil transport in different zones are coupled into the dynamics model. Specifically, two mass-conserved fluid sub-models predict the oil movement between rail liner interface and rail groove clearance to capture the potential oil leakage through TPOCR. The model is applied on a 2D laser induced fluorescence (2D-LIF) engine.
Technical Paper

A Numerical Model for Piston Pin Lubrication in Internal Combustion Engines

2020-09-15
2020-01-2228
As the piston pin works under significant mechanical load, it is susceptible to wear, seizure, and structural failure, especially in heavy duty internal combustion engines. It has been found that the friction loss associated with the pin is comparable to that of the piston, and can be reduced when the interface geometry is properly modified. However, the mechanism that leads to such friction reduction, as well as the approaches towards further improvement, remain unknown. This work develops a piston pin lubrication model capable of simulating the interaction between the pin, the piston, and the connecting rod. The model integrates dynamics, solid contact, oil transport, and lubrication theory, and applies an efficient numerical scheme with second order accuracy to solve the highly stiff equations. As a first approach, the current model assumes every component to be rigid.
Technical Paper

A Computational Study of the Lubricant Transport into Oil Control Ring Groove

2019-12-19
2019-01-2362
Lubricant transport into an oil control ring (OCR) groove through the clearance between the lower flank of the OCR and the groove was studied. A primary driving force of such lubricant transport is a dynamic pressure on the outer end of the clearance. The magnitude of the pressure depends on the flow pattern in the skirt chamfer region. Computational Fluid Dynamics (CFD) was employed to simulate the multiphase flow involving lubricant and gas in a skirt chamfer region. A correlation to predict the dynamic pressure was proposed and validated. The amount of lubricant transport into an OCR groove was found remarkable in a high-speed full-load condition.
Technical Paper

Study of the Effects of Oil Supply and Piston Skirt Profile on Lubrication Performance in Power Cylinder Systems

2019-12-19
2019-01-2364
In internal combustion engines, the majority of the friction loss associated with the piston takes place on the thrust side in early expansion stroke. Research has shown that the Friction Mean Effective Pressure (FMEP) of the engine can be reduced if proper modifications to the piston skirt, which is traditionally barrel-shaped, are made. In this research, an existing model was applied for the first time to study the effects of different oil supply strategies for the piston assembly. The model is capable of tracking lubricating oil with the consideration of oil film separation from full film to partial film. It is then used to analyze how the optimized piston skirt profile investigated in a previous study reduces friction.
Journal Article

Modeling of Oil Transport between Piston Skirt and Cylinder Liner in Internal Combustion Engines

2019-04-02
2019-01-0590
The distribution of lubricating oil plays a critical role in determining the friction between piston skirt and cylinder liner, which is one of the major contributors to the total friction loss in internal combustion engines. In this work, based upon the experimental observation an existing model for the piston secondary motion and skirt lubrication was improved with a physics-based model describing the oil film separation from full film to partial film. Then the model was applied to a modern turbo-charged SI engine. The piston-skirt FMEP predicted by the model decreased with larger installation clearance, which was also observed from the measurements using IMEP method at the rated. It was found that the main period of the cycle exhibiting friction reduction is in the expansion stroke when the skirt only contacts the thrust side for all tested installation clearances.
Technical Paper

A One-Line Correlation for Predicting Oil Vaporization from Liner for IC Engines

2018-04-03
2018-01-0162
The increasingly stringent regulations for fuel economy and emissions require better optimization and control of oil consumption. One of the primary mechanisms of oil consumption is vaporization from the liner; we consider this as the “minimum oil consumption (MOC).” This paper presents a physical-mathematical cycle model for predicting the MOC. The numerical simulations suggest that the MOC is markedly sensitive to oil volatility, liner temperature, engine load and speed but less sensitive to oil film thickness. A one-line correlation is proposed for quick MOC estimations. It is shown to have <15% error compared to the cycle MOC computation. In the “dry region” (between top ring and OCR at the TDC), oil is depleted due to high heat and continual exposure to the combustion chamber.
Technical Paper

Modeling the Evolution of Fuel and Lubricant Interactions on the Liner in Internal Combustion Engines

2018-04-03
2018-01-0279
In internal combustion engines, a portion of liquid fuel spray may directly land on the liner and mix with oil (lubricant), forming a fuel-oil film (~10μm) that is much thicker than the original oil film (~0.1μm). When the piston retracts in the compression stroke, the fuel-oil mixture may have not been fully vaporized and can be scraped by the top ring into the 1st land crevice and eventually enter the combustion chamber in the format of droplets. Studies have shown that this mechanism is possibly a leading cause for low-speed pre-ignition (LSPI) as the droplets contain oil that has a much lower self-ignition temperature than pure fuel. In this interest, this work aims to study the oil-fuel interactions on the liner during an engine cycle, addressing molecular diffusion (in the liquid film) and vaporization (at the liquid-gas interface) to quantify the amount of fuel and oil that are subject to scraping by the top ring, thereby exploring their implications on LSPI and friction.
Journal Article

Development and Application of Ring-Pack Model Integrating Global and Local Processes. Part 1: Gas Pressure and Dynamic Behavior of Piston Ring Pack

2017-03-28
2017-01-1043
A new ring pack model has been developed based on the curved beam finite element method. This paper describes the first part of this model: simulating gas pressure in different regions above piston skirt and ring dynamic behavior of two compression rings and a twin-land oil control ring. The model allows separate grid divisions to resolve ring structure dynamics, local force/pressure generation, and gas pressure distribution. Doing so enables the model to capture both global and local processes at their proper length scales. The effects of bore distortion, piston secondary motion, and groove distortion are considered. Gas flows, gas pressure distribution in the ring pack, and ring structural dynamics are coupled with ring-groove and ring-liner interactions, and an implicit scheme is employed to ensure numerical stability. The model is applied to a passenger car engine to demonstrate its ability to predict global and local effects on ring dynamics and oil transport.
Journal Article

Development and Application of Ring-Pack Model Integrating Global and Local Processes. Part 2: Ring-Liner Lubrication

2017-03-28
2017-01-1047
A new ring pack model has been developed based on the curved beam finite element method. This paper describes the second part of this model: simulating oil transport around the ring pack system (two compression rings and one twin-land oil control ring (TLOCR)) through the ring-liner interfaces by solving the oil film thickness on the liner. The ring dynamics model in Part 1 calculates the inter-ring gas pressure and the ring dynamic twist which are used in the ring-liner lubrication model as boundary conditions. Therefore, only in-plane conformability is calculated to obtain the oil film thickness on the liner. Both global process, namely, the structural response of the rings to bore distortion and piston tilt, and local processes, namely, bridging and oil-lube interaction, are considered. The model was applied to a passenger car engine.
Journal Article

A Study of the Friction of Oil Control Rings Using the Floating Liner Engine

2016-04-05
2016-01-1048
The oil control ring (OCR) controls the supply of lubricating oil to the top two rings of the piston ring pack and has a significant contribution to friction of the system. This study investigates the two most prevalent types of OCR in the automotive market: the twin land oil control ring (TLOCR) and three piece oil control ring (TPOCR). First, the basis for TLOCR friction on varying liner roughness is established. Then the effect of changing the land width and spring tension on different liner surfaces for the TLOCR is investigated, and distinct trends are identified. A comparison is then done between the TLOCR and TPOCR on different liner surfaces. Results showed the TPOCR displayed different patterns of friction compared the TLOCR in certain cases.
Technical Paper

Modeling of the Rotary Engine Apex Seal Lubrication

2015-09-01
2015-01-2035
The Wankel rotary engine is more compact than conventional piston engines, but its oil and fuel consumption must be reduced to satisfy emission standards and customer expectations. A key step toward this goal is to develop a better understanding of the apex seal lubrication to reduce oil injection while reducing friction and maintaining adequate wear. This paper presents an apex seal dynamics model capable of estimating relative wear and predicting friction, by modeling the gas and oil flows at the seal interfaces with the rotor housing and groove flanks. Model predictions show that a thin oil film can reduce wear and friction, but to a limited extent as the apex seal running face profile is sharp due to the engine kinematics.
Technical Paper

A Numerical and Experimental Study of Twin-land Oil Control Ring Friction in Internal Combustion Engines Part 2

2012-04-16
2012-01-1321
A twin-land oil control ring (TLOCR) model is used to evaluate TLOCR friction and the results are compared to the experiment measurement in a single cylinder floating liner engine under motoring condition. The model is based on a correlation between the hydrodynamic pressure and film thickness, which is generated using a deterministic model. The well-known three-regime lubrication is predicted with the model for ring with different ring tensions under various engine running conditions. A good match is found for the model and experiment results.
Technical Paper

A Simplified Piston Secondary Motion Model Considering the Dynamic and Static Deformation of Piston Skirt and Cylinder Bore in Internal Combustion Engines

2008-06-23
2008-01-1612
A dry piston secondary dynamics model has been developed. This model includes the detailed piston and cylinder bore hot shape geometries, and piston deformations due to combustion pressure, axial inertia and interaction with the cylinder bore, but neglects the effects of the hydrodynamic lubrication at the piston - cylinder bore interface in order to achieve faster calculation times. The piston - cylinder bore friction is calculated using a user supplied friction coefficient. This model provides a very useful, fast tool for power cylinder system analysis, provided its limitations are understood.
Technical Paper

A Deterministic Model for Lubricant Transport within Complex Geometry under Sliding Contact and its Application in the Interaction between the Oil Control Ring and Rough Liner in Internal Combustion Engines

2008-06-23
2008-01-1615
A general deterministic hydrodynamic lubrication model [1] was modified to study the interaction between a Twin Land Oil Control Ring (TLOCR) and a liner with cross-hatch liner finish. Efforts were made to customize the general model to simulate the particular sliding condition of TLOCR/liner interaction with proper boundary conditions. The results show that model is consistent, robust, and efficient. The lubricant mass conservation was justified and discussed. Then analysis was conducted on the lubricant transport between the deep grooves/valleys and plateau part of the surface to illustrate the importance of deep grooves in oil supply to the plateau part and hydrodynamic pressure generation. Furthermore, since the TLOCR land running surface is completely flat and parallel to the nominal liner axis, the liner finish micro geometry is fully responsible for the hydrodynamic pressure rise, which was found to be sufficient to support significant portion of the total ring radial load.
Technical Paper

The Influences of Cylinder Liner Honing Patterns and Oil Control Ring Design Parameters on the Interaction between the Twinland Oil Control Ring and the Cylinder Liner in Internal Combustion Engines

2008-06-23
2008-01-1614
This paper discusses the influences of several cylinder liner honing surface geometrical features on the interaction between the piston twin land oil control ring (TLOCR) and the cylinder liner by using the deterministic hydrodynamic model [1] and the twin land oil control ring model [2]. Additionally, the key design parameters of the TLOCR, including ring tension and land axial width are studied. The results show significant effects of three liner honing surface features beyond height distribution, including plateau wavelength, groove density and honing angle in hydrodynamic pressure generation. The study in oil control ring design parameters reveals that both ring tension and land axial width have important influences on friction and oil consumption, and their competing effects are discussed subsequently.
Technical Paper

An Experimental Study of Oil Transport between the Piston Ring Pack and Cylinder Liner

2005-10-24
2005-01-3823
The paper presents a detailed study of a unique lubricating oil transport and exchange path that is important for friction, wear, and oil consumption in a 4 stroke spark ignition engine, namely the oil flow from the piston to the cylinder liner. The study consisted of experiments with a test engine utilizing 2D LIF (Two Dimensional Laser Induced Fluorescence) techniques to view real time oil transport and exchange, along with computer modeling. The effects of engine speed, load, and oil ring design were included as part of the research. The test conditions ranged from 800 RPM to 4500 RPM, while the load was varied from closed throttle to wide open throttle. Several different oil control ring designs were utilized, including U-Flex, Twin-Land, and 3-Piece. Oil transport and exchange from the piston to the liner was observed under several different engine conditions, typically moderate to high engine speeds and low loads.
Technical Paper

Implementation and Improvements of a Flow Continuity Algorithm in Modeling Ring/Liner Lubrication

2005-04-11
2005-01-1642
Based upon a hydrodynamic lubrication model used in journal bearing simulation, a one-dimensional flow continuity algorithm was developed in modeling ring-liner lubrication. By applying a “universal” differential equation to the entire ring-liner interface, the starting and ending points of full film can be located automatically. Considering the oil flow difference in the regions partially filled by oil between the ring/liner lubrication and bearing lubrication, the traditional assumption that the streams of oil and oil-vapor/air attach to both surfaces was relaxed in this model. Corresponding to this improvement, a transition region was introduced to smooth out the discontinuity of convection flow at the interface between a region fully filled by oil and a region partially filled by oil. Moreover, a distribution of standard pressure, which is crucial in formulating the universal differential equation, was proposed.
Technical Paper

An Experimental Study of Oil Transport on the Piston Third Land and the Effects of Piston and Ring Designs

2004-06-08
2004-01-1934
Faced with increasing concern for lubricating oil consumption and engine friction, it is critical to understand the oil transport mechanisms in the power cylinder system. Lubricating oil travels through distinct regions along the piston ring pack before being consumed in the combustion chamber, with the oil distribution and dominant driving forces varying substantially for each of these regions. In this work, the focus is on the lowest region in the piston ring pack, namely the third land, which is located between the second compression ring and the oil control ring. A detailed 2D LIF (Two Dimensional Laser Induced Fluorescence) study has been performed on the oil distribution and flow patterns of the third land throughout the entire cycle of a single cylinder spark ignition engine. The impact of speed and load were experimentally observed with the LIF generated real time high-resolution images, as were changes in piston and ring design.
Technical Paper

Modeling the Dynamics and Lubrication of Three Piece Oil Control Rings in Internal Combustion Engines

1998-10-19
982657
The oil control ring is the most critical component for oil consumption and friction from the piston system in internal combustion engines. Three-piece oil control rings are widely used in Spark Ignition (SI) engines. However, the dynamics and lubrication of three piece oil control rings have not been thoroughly studied from the theoretical point of view. In this work, a model was developed to predict side sealing, bore sealing, friction, and asperity contact between rails and groove as well as between rails and the liner in a Three Piece Oil Control Ring (TPOCR). The model couples the axial and twist dynamics of the two rails of TPOCR and the lubrication between two rails and the cylinder bore. Detailed rail/groove and rail/liner interactions were considered. The pressure distribution from oil squeezing and asperity contact between the flanks of the rails and the groove were both considered for rail/groove interaction.
X