Refine Your Search

Search Results

Technical Paper

Tribodynamics of Spiral Bevel Gears under Mixed Elastohydrodynamic Lubrication

2023-05-08
2023-01-1134
Spiral bevel gears are commonly used in heavy-duty trucks and buses. An integrated dynamic model of the spiral bevel gears with mixed elastohydrodynamic lubrication is proposed in this study. First, loaded tooth contact analysis was performed to evaluate the kinematic parameters and calculate the mesh force variation for one mesh cycle. These kinematic quantities are used in the mixed elastohydrodynamic lubrication (EHL) calculation to determine the EHL parameters such as pressure, film thickness, and shear distribution considering the surface roughness profile of the spiral bevel gears. Then, the EHL pressure and film thickness are used in the calculation of the coefficient of friction, damping, and oil film elastohydrodynamic lubrication stiffness. Last, these tribological parameters are used in the dynamic calculation of the spiral bevel gears.
Technical Paper

Effects of Tool Errors on Face-hobbed Hypoid Gear Mesh and Dynamic Response

2023-05-08
2023-01-1133
The tooth surface error will affect the contact pattern and transmission error of the hypoid gear, which may result in an unfavorable dynamic response. The tooth surface error can be generated by machine tool errors, such as blade wear. The most common forms of blade wear are the positive cutter radius and the positive blade angle error. In addition, in the cutting process of face-hobbed hypoid gear, the continuous indexing motion will aggravate the blade wear due to the alternating cutting force. Most previous studies on the influence of hypoid gear tool errors only focus on the contact pattern and static transmission error. However, there are very few studies about the effect of tool errors on hypoid gear dynamic responses. In this paper, a hypoid gear tooth surface, mesh, and linear dynamic model with tool errors were established. The tooth surface deviation distribution of different tool errors was analyzed.
Technical Paper

Optimization of Hypoid Gear Tooth Profile Modifications on Vehicle Axle System Dynamics

2019-06-05
2019-01-1527
The vehicle axle gear whine noise and vibration are key issues for the automotive industry to design a quiet, reliable driveline system. The main source of excitation for this vibration energy comes from hypoid gear transmission error (TE). The vibration transmits through the flexible axle components, then radiates off from the surface of the housing structure. Thus, the design of hypoid gear pair with minimization of TE is one way to control the dynamic behavior of the vehicle axle system. In this paper, an approach to obtain minimum TE and improved dynamic response with optimal tooth profile modification parameters is discussed. A neural network algorithm, named Back Propagation (BP) algorithm, with improved Particle Swarm Optimization (PSO) is used to predict the TE if some tooth profile modification parameters are given to train the model.
Technical Paper

Improvement of Hypoid Gears Dynamics Performance Based on Tooth Contact Optimization

2019-06-05
2019-01-1563
The meshing noise of hypoid gear has a significant influence on driving axle system. It should be strictly controlled in order to reduce the whole vehicle noise. Meshing internal excitation of hypoid gear is a main source of vibration noise, closely connected with geometrical shape and meshing status. There is no comprehensive analysis on the impact of various contact patterns on vibration noise in previous studies. Therefore, the method for controlling contact characteristics of hypoid gears is studied in this paper, which includes adjusting the position and length of contact pattern, direction of contact trace and the theoretical transmission error. Also, a non-linear dynamic model with multi-freedom for the hypoid gear pair of the driving axle is established to evaluate the dynamic response of the gear pair. Then an example was carried out to improve the dynamic characteristic of hypoid gears by tooth profile modification.
Journal Article

Effect of Friction Torque on Electromechanical Brake System Dynamics

2017-06-05
2017-01-1902
Actuator and roller screw mechanism are key components of electromechanical brake (EMB) system in automotive and aerospace industry. The inverted planetary roller screw mechanism (IPRSM) is particularly competitive due to its high load-carrying capacity and small assembly size. For such systems, friction characteristic and friction torque generated from rolling/sliding contacts can be an important factor that affects the dynamic performance as well as vibration behavior. This paper investigates the modeling and simulation of the EMB system in early design stage with special attention to friction torque modelling of IPRSM. Firstly, a step-by-step system model development is established, which includes the controller, servo motor, planetary gear train and roller screw mechanism to describe the dynamic behavior of the EMB system.
Journal Article

Effect of Component Flexibility on Axle System Dynamics

2017-06-05
2017-01-1772
The prediction and control of gear vibration and noise has become very important in the design of a quiet, high-quality gearbox systems. The vibratory energy of the gear pair caused by transmission error excitation is transmitted structurally through shaft-bearing-housing assembly and radiates off from exterior housing surface. Most of the previous studies ignore the contribution of components flexibility to the transmission error (TE) and system dynamic responses. In this study, a system level model of axle system with hypoid gear pair is developed, aiming at investigating the effect of the elasticity of the shafts, bearings and housing on TE as well as the contribution of flexible bearings on the dynamic responses. The load distribution results and gear transmission errors are calculated and compared between different assumptions on the boundary conditions.
Journal Article

Interaction of Gear-Shaft Dynamics Considering Gyroscopic Effect of Compliant Driveline System

2015-06-15
2015-01-2182
Due to the design of lightweight, high speed driveline system, the coupled bending and torsional vibration and rotordynamics must be considered to predict vibratory responses more realistically. In the current analysis, a lumped parameter model of the propeller shaft is developed with Timoshenko beam elements, which includes the effect of rotary inertia and shear deformation. The propeller shaft model is then coupled with a hypoid gear pair representation using the component mode synthesis approach. In the proposed formulation, the gyroscopic effect of both the gear and propeller shaft is considered. The simulation results show that the interaction between gear gyroscopic effect and propeller shaft bending flexibility has considerable influence on the gear dynamic mesh responses around bending resonances, whereas the torsional modes still dominate in the overall frequency spectrum.
Technical Paper

Geometry Design of a Non-Pin Cycloid Drive for In-Wheel Motor

2015-06-15
2015-01-2172
Cycloid drives are widely used in the in-wheel motor for electric vehicles due to the advantages of large ratio, compact size and light weight. To improve the transmission efficiency and the load capability and reduce the manufacturing cost, a novel cycloid drive with non-pin design for the application in the in-wheel motor is proposed. Firstly, the generation of the gear pair is presented based on the gearing of theory. Secondly, the meshing characteristics, such as the contact zones, curvature difference, contact ratio and sliding coefficients are derived for performance evaluation. Then, the loaded tooth contact analysis (LTCA) is performed by establishing a mathematical model based on the Hertz contact theory to calculate the contact stress and deformation.
Technical Paper

Tuning Axle Whine Characteristics with Emphasis on Gear Dynamics and Psychoacoustics

2015-06-15
2015-01-2181
A combined lumped parameter, finite element (FE) and boundary element (BE) model is developed to predict the whine noise from rear axle. The hypoid geared rotor system, including the gear pair, shafts, bearings, engine and load, is represented by a lumped parameter model, in which the dynamic coupling between the engaging gear pair is represented by a gear mesh model condensed from the loaded tooth contact analysis results. The lumped parameter model gives the dynamic bearing forces, and the noise radiated by the gearbox housing vibration due to the dynamic bearing force excitations is calculated using a coupled FE-BE approach. Based on the predicted noise, a new procedure is proposed to tune basic rear axle design parameters for better sound quality purpose. To illustrate the salient features of the proposed method, the whine noise from an example rear axle is predicted and tuned.
Journal Article

Multi-Point Mesh Modeling and Nonlinear Multi-Body Dynamics of Hypoid Geared System

2013-05-13
2013-01-1895
A multi-point hypoid gear mesh model based on 3-dimensional loaded tooth contact analysis is incorporated into a coupled multi-body dynamic and vibration hypoid gear model to predict more detailed dynamic behavior of each tooth pair. To validate the accuracy of the proposed model, the time-averaged mesh parameters are applied to linear time-invariant (LTI) analysis and the dynamic responses, such as dynamic mesh force, dynamic transmission error, are computed, which demonstrates good agreement with that predicted by single-point mesh model. Furthermore, a nonlinear time-varying (NLTV) dynamic analysis is performed considering the effect of backlash nonlinearity and time-varying mesh parameters, such as mesh stiffness, transmission error, mesh point and line-of-action. Simulation results show that the time history of the mesh parameters and dynamic mesh force for each pair of teeth within a full engagement cycle can be simulated.
Journal Article

Influence of Gyroscopic Effect on Hypoid and Bevel Geared System Dynamics

2009-05-19
2009-01-2070
The noise and vibration response of hypoid or bevel geared rotor system, primarily excited by transmission error (TE), and mesh vector and stiffness variations, can be affected significantly by the coupling between the driveline rotor dynamics and gear vibratory response. This is because of the inherent design comprising of non-parallel rotational axes and time-varying as well as spatial-varying gear mesh characteristics. One of the important factors of the driveline system dynamics is the rotor gyroscopic effect that has not been studied extensively in traditional gear dynamics. To address this gap in the literature, this paper attempts to examine the influence of incorporating gyroscopic terms in the hypoid gear dynamic simulation. A multi-degrees-of-freedom, multi-body dynamic model is used as a generalized representation of a hypoid geared rotor system.
Technical Paper

Time-Varying Non-Linear Dynamics of a Hypoid Gear Pair for Rear Axle Applications

2007-05-15
2007-01-2243
A general time-varying nonlinear dynamic model of a hypoid gear pair for rear axle applications is proposed. The dynamic model considers time-varying mesh position, line of action, mesh stiffness, mesh damping and backlash nonlinearity. Based on the model, dynamic analysis is conducted to study the effect of mean load, mesh damping and mesh parameter variations on dynamic mesh force response and the interaction between them and backlash nonlinearity. Numerous nonlinear phenomena such as tooth impacts and jump discontinuities are revealed by computational results.
Technical Paper

Coupled Multi-Body Dynamic and Vibration Analysis of High-Speed Hypoid Geared Rotor System

2007-05-15
2007-01-2228
High speed, precision geared rotor systems are often plagued by excessive vibration and noise problems. The response that is primarily excited by gear transmission error is actually coupled to the large displacement rotational motion of the driveline system. Classical pure vibration model assumes that the system oscillates about its mean position without coupling to the large displacement motion. To improve on this approach and understanding of the influences of the dynamic coupling, a coupled multi-body dynamic and vibration simulation model is proposed. Even though the focus is on hypoid geared rotor system, the model is more general since hypoid and bevel gears have more complicated geometry and time and spatial-varying characteristics compared to parallel axis gears.
Technical Paper

Active Vibration Control to Suppress Gear Mesh Response

2007-05-15
2007-01-2420
This paper discusses an enhanced active vibration control concept to suppress the dynamic response associated with gear mesh frequencies. In active control application, the control of dynamic gear mesh tonal response is essentially the rejection or suppression of periodical disturbance. Our active control experimental work shows that the existence of un-controlled harmonic result in the increase at these harmonics when applying direct control to the target mesh frequencies. To address this problem, the effect of the existence of un-correlated harmonic components in error signal when applying active control to suppress the target gear mesh harmonics is examined. The proposed adaptive controller that is designed specifically for tackling gear mesh frequency vibrations is based on an enhanced filtered-x least mean square algorithm (FXLMS) with frequency estimation to synthesize the required reference signal.
Technical Paper

Driveline NVH Modeling Applying a Multi-subsystem Spectral-based Substructuring Approach

2005-05-16
2005-01-2300
A new multi-level substructuring approach is proposed to predict the NVH response of driveline systems for the purpose of analyzing rear axle gear whine concern. The fundamental approach is rooted in the spectral-based compliance coupling theory for combining the dynamics of two adjacent subsystems. This proposed scheme employs test-based frequency response functions of individual subsystems, including gear pairs, propshaft, control arms and axle tube, in free-free state as sequential building blocks to synthesize the complete system NVH response. Using an existing driveline design, the salient features of this substructuring approach is demonstrated. Specifically, the synthesized results for the pinion-propshaft assembly and complete vehicle system are presented. The predictions are seen to be in excellent agreement with the experimental data from direct vehicle measurements.
Technical Paper

A Parametric Study on the Vibration Transmissibility Characteristics of Transmission Ring Gear Structure

2003-05-05
2003-01-1660
The vibratory energy from the ring gear resulting due to planet/ring gear dynamic forces is typically transmitted via structure-borne paths and is most evident in the range of 1-6000 Hz for automotive transmissions. In this paper, a comprehensive parametric force response analysis to study the vibration transmissibility characteristics of typical automotive planetary ring gears is performed. Effects of various geometrical parameters and number of planets on vibration transmissibility characteristics of ring gear structure are also studied. The planet/ring gear mesh forces are explicitly defined as externally applied force. Vibration transmissibility is defined by the spatial average acceleration response of the outer surface of the ring gear. The root mean square (RMS) value of these average responses is also predicted.
Technical Paper

Effects of Boundary Conditions on the Natural Modes of Transmission Ring Gear Structure

2001-04-30
2001-01-1416
The natural modes of the ring gear structure commonly used in automotive transmissions are predicted using the finite element approach, and the sensitivities of these modes to boundary conditions between the housing and ring gear are analyzed. The specific boundary conditions of interest include free-free, simply-supports at equally spaced angular points, and discrete and distributed spring elements. For the free-free boundary condition, clear well-defined modes are observed that can be classified into four fundamental groups corresponding to radial inextensional, extensional, out-of-plane bending and pure torsional. However, when other boundary conditions are applied the mode shapes become more complex. For instance, in the simply-supported case the radial inextensional and torsional modes are seen to appear highly distorted. Also, the natural frequencies of these modes are higher than the free-free ones.
Technical Paper

Crankshaft Rumble Noise Phenomenon: Experimental Characterization of Source Strength and Path Response

1999-05-17
1999-01-1770
A series of system level experiments were conducted using 2 vehicles of identical design to measure, analyze and quantify crank rumble noise from the viewpoint of source strength and path dynamic response. One of the vehicles was known to produce relatively severe crank rumble response (noisy), while the second vehicle was almost free of the annoying response (quiet). Two specific operating conditions most susceptible to crank rumble noise were of interest: (1) no load snaps in neutral and (2) hard acceleration in second gear. For each condition, the vibration and sound pressure responses throughout the vehicle were obtained. The measured data was analyzed critically to determine frequency content and strength of rumble noise at each location. Calculations were also performed from the measured data to determine the modes of transmission and the relative contributions from air-borne and structure-borne paths.
Technical Paper

Methods for Researching Gear Whine in Automotive Transaxles

1999-05-17
1999-01-1768
In this paper, we discuss methods used to investigate a clearly audible gear whine problem in a modern automobile. Currently available PC-based computer software, coupled with more traditional engineering tools, such as spectrum analyzers, are employed to efficiently observe noise and vibration phenomena. Jury evaluations are conducted, using in-vehicle noise data, to rank actual gear whine levels. Additional jury studies using synthesized gear whine help us further understand listener preferences. Unloaded gear transmission error testing is explored as a means of predicting gear whine levels under light loads, such as those seen during highway cruising. We finally correlate many results to better understand the source and paths of the gear noise, and make recommendations for further exploration of this type of problem.
Technical Paper

Case History: Engine Timing Gear Noise Reduction

1999-05-17
1999-01-1716
This paper describes the procedures used to reduce the tonal noise of a class eight truck engine timing gear train that was initially found to be objectionable under idle operating conditions. Initial measurements showed that the objectionable sounds were related to the fundamental gear mesh frequency, and its second and third harmonics. Experimental and computational procedures used to study and trouble-shoot the problem include vibration and sound measurements, transmission error analysis of the gears under light load condition, and a dynamic analysis of the drive system. Detail applications of these techniques are described in this paper.
X