Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 2: Integration of Machine Learning Vehicle Velocity Prediction with Optimal Energy Management to Improve Fuel Economy

An optimal energy management strategy (Optimal EMS) can yield significant fuel economy (FE) improvements without vehicle velocity modifications. Thus it has been the subject of numerous research studies spanning decades. One of the most challenging aspects of an Optimal EMS is that FE gains are typically directly related to high fidelity predictions of future vehicle operation. In this research, a comprehensive dataset is exploited which includes internal data (CAN bus) and external data (radar information and V2V) gathered over numerous instances of two highway drive cycles and one urban/highway mixed drive cycle. This dataset is used to derive a prediction model for vehicle velocity for the next 10 seconds, which is a range which has a significant FE improvement potential. This achieved 10 second vehicle velocity prediction is then compared to perfect full drive cycle prediction, perfect 10 second prediction.
Technical Paper

V2V Communication Based Real-World Velocity Predictions for Improved HEV Fuel Economy

Studies have shown that obtaining and utilizing information about the future state of vehicles can improve vehicle fuel economy (FE). However, there has been a lack of research into whether near-term technologies can be utilized to improve FE and the impact of real-world prediction error on potential FE improvements. In this study, a speed prediction method utilizing simulated vehicle-to-vehicle (V2V) communication with real-world driving data and a drive cycle database was developed to understand if incorporating near-term technologies could be utilized in a predictive energy management strategy to improve vehicle FE. This speed prediction method informs a predictive powertrain controller to determine the optimal engine operation for various prediction durations. The optimal engine operation is input into a validated high-fidelity fuel economy model of a Toyota Prius.
Technical Paper

Enabling Prediction for Optimal Fuel Economy Vehicle Control

Vehicle control using prediction based optimal energy management has been demonstrated to achieve better fuel economy resulting in economic, environmental, and societal benefits. However, research focusing on prediction derivation for use in optimal energy management is limited despite the existence of hundreds of optimal energy management research papers published in the last decade. In this work, multiple data sources are used as inputs to derive a prediction for use in optimal energy management. Data sources include previous drive cycle information, current vehicle state, the global positioning system, travel time data, and an advanced driver assistance system (ADAS) that can identify vehicles, signs, and traffic lights. To derive the prediction, the data inputs are used in a nonlinear autoregressive artificial neural network with external inputs (NARX).
Technical Paper

The Importance of HEV Fuel Economy and Two Research Gaps Preventing Real World Implementation of Optimal Energy Management

Optimal energy management of hybrid electric vehicles has previously been shown to increase fuel economy (FE) by approximately 20% thus reducing dependence on foreign oil, reducing greenhouse gas (GHG) emissions, and reducing Carbon Monoxide (CO) and Mono Nitrogen Oxide (NOx) emissions. This demonstrated FE increase is a critical technology to be implemented in the real world as Hybrid Electric Vehicles (HEVs) rise in production and consumer popularity. This review identifies two research gaps preventing optimal energy management of hybrid electric vehicles from being implemented in the real world: sensor and signal technology and prediction scope and error impacts. Sensor and signal technology is required for the vehicle to understand and respond to its environment; information such as chosen route, speed limit, stop light locations, traffic, and weather needs to be communicated to the vehicle.
Technical Paper

The Effect of Hill Planning and Route Type Identification Prediction Signal Quality on Hybrid Vehicle Fuel Economy

Previous research has demonstrated an increase in Fuel Economy (FE) using an optimal controller based on limited foreknowledge using methods such as Engine Equivalent Minimization Strategy (ECMS) and Stochastic Dynamic Programming (SDP) with stochastic error in the prediction signal considerations. This study seeks to quantify the sensitivity of prediction-derived vehicle FE improvements to prediction signal quality assuming optimal control. In this research, a hill pattern and route type identification scenario control subjected to varying prediction signal quality is selected for in depth study. This paper describes the development of a baseline Toyota Prius Hybrid Vehicle (HV) simulation models, real world drive cycles and real-world disturbances, and an optimal controller incorporating a prediction of vehicle power requirements.