Refine Your Search

Topic

Search Results

Journal Article

Technical Study for the Development of Air Brake Compressor in Electric Commercial Vehicles

2024-05-07
Abstract The development of electric commercial vehicles brought up novel challenges in the design of efficient and reliable air brake systems. The compressor is one of the critical components of the air brake system and is responsible for supplying pressurized air to the brake system. In this study, we aimed to gather essential information regarding the pressure and flow rate requirements for the compressor in the air brake system of electric commercial vehicles. We extensively analyzed the existing air brake systems utilized in conventional commercial vehicles. We examined the performance characteristics of reciprocating compressors traditionally employed in these systems. Recognizing the need for novel compressor designs tailored to electric commercial vehicles, we focused on identifying the specifics such as efficiency, performance characteristics, reliability, and cost of the compressor.
Journal Article

Fuel Efficiency Analysis and Control of a Series Electric Hybrid Compact Wheel Loader

2024-05-03
Abstract The escalating demand for more efficient and sustainable working machines has pushed manufacturers toward adopting electric hybrid technology. Electric powertrains promise significant fuel savings, which are highly dependent on the nature of the duty cycle of the machine. In this study, experimental data measured from a wheel loader in a short-loading Y-cycle is used to exercise a developed mathematical model of a series electric hybrid wheel loader. The efficiency and energy consumption of the studied architecture are analyzed and compared to the consumption of the measured conventional machine that uses a diesel engine and a hydrostatic transmission. The results show at least 30% reduction in fuel consumption by using the proposed series electric hybrid powertrain, the diesel engine rotational speed is steady, and the transient loads are mitigated by the electric powertrain.
Journal Article

Suitability Study of Biofuel Blend for Light Commercial Vehicle Application under Real-World Transient Operating Conditions

2024-04-10
Abstract Driving schedule of every vehicle involves transient operation in the form of changing engine speed and load conditions, which are relatively unchanged during steady-state conditions. As well, the results from transient conditions are more likely to reflect the reality. So, the current research article is focused on analyzing the biofuel-like lemon peel oil (LPO) behavior under real-world transient conditions with fuel injection parameter MAP developed from steady-state experiments. At first, engine parameters and response MAPs are developed by using a response surface methodology (RSM)-based multi-objective optimization technique. Then, the vehicle model has been developed by incorporating real-world transient operating conditions. Finally, the developed injection parameters and response MAPs are embedded in the vehicle model to analyze the biofuel behavior under transient operating conditions.
Journal Article

Experimental Investigation of a Flexible Airframe Taxiing Over an Uneven Runway for Aircraft Vibration Testing

2024-03-01
Abstract The ground vibration test (GVT) is an important phase in a new aircraft development program, or the structural modification of a certified aircraft, to experimentally determine the structural vibrational modes of the aircraft and their modal parameters. These modal parameters are used to validate and correlate the dynamic finite element model of the aircraft to predict potential structural instabilities (such as flutter), assessing the significance of modifications to research vehicles by comparing the modal data before and after the modification and helping to resolve in-flight anomalies. Due to the high cost and the extensive preparations of such tests, a new method of vibration testing called the taxi vibration test (TVT) rooted in operational modal analysis (OMA) was recently proposed and investigated as an alternative method to conventional GVT.
Journal Article

Influence of Exhaust Aftertreatment System on Powertrain Vibration Behavior

2024-03-01
Abstract NVH refinement of commercial vehicles is the key attribute for customer acceptance. Engine and road irregularities are the two major factors responsible for the same. During powertrain isolators’ design alone, the mass and inertia of the powertrain are usually considered, but in practical scenarios, a directly coupled subsystem also disturbs the boundary conditions for design. Due to the upgradation in emission norms, the exhaust aftertreatment system of modern automotive vehicles becomes heavier and more complex. This system is further coupled to the powertrain through a flexible joint or fixed joint, which results in the disturbance of the performance of the isolators. Therefore, to address this, the isolators design study is done by considering a multi-body dynamics model of vehicles with 16 DOF and 22 DOF problems, which is capable to simulate static and dynamic real-life events of vehicles.
Journal Article

Design, Analysis, and Optimization of Off-Highway Rear Dump Truck Chassis Frame Rail Profile Using Design Exploration and Finite Element Analysis Technique

2024-01-31
Abstract During mining material hauling, the chassis frame structure of rear dump trucks is subjected to fatigue loading due to uneven road conditions. This loading often leads to crack propagation in the frame rails, necessitating the determination of stresses in the critical zone during the design stage to ensure structural integrity. In this study, a computer-aided engineering (CAE) methodology is employed to size and select the rectangular profile cross section of the chassis frame rail. A detailed design investigation of the chassis frame is conducted to assess its load resistance, structural flexibility, and weld joint fatigue life under critical stresses arising from combined bending and torsion loads. The optimization process aims to determine the optimal rail size and material thickness, striking a balance between minimizing mass and maximizing structural reliability.
Journal Article

Aircraft Cockpit Window Improvements Enabled by High-Strength Tempered Glass

2024-01-25
Abstract This research was initiated with the goal of developing a significantly stronger aircraft transparency design that would reduce transparency failures from bird strikes. The objective of this research is to demonstrate the fact that incorporating high-strength tempered glass into cockpit window constructions for commercial aircraft can produce enhanced safety protection from bird strikes and weight savings. Thermal glass tempering technology was developed that advances the state of the art for high-strength tempered glass, producing 28 to 36% higher tempered strength. As part of this research, glass probability of failure prediction methodology was introduced for determining the performance of transparencies from simulated bird impact loading. Data used in the failure calculation include the total performance strength of highly tempered glass derived from the basic strength of the glass, the temper level, the time duration of the load, and the area under load.
Journal Article

TOC

2023-12-18
Abstract TOC
Journal Article

Computational Investigation of a Flexible Airframe Taxiing Over an Uneven Runway for Aircraft Vibration Testing

2023-12-15
Abstract Ground vibration testing (GVT) is an important phase of the development, or the structural modification of an aircraft program. The modes of vibration and their associated parameters extracted from the GVT are used to modify the structural model of the aircraft to make more reliable dynamics predictions to satisfy certification authorities. Due to the high cost and the extensive preparations for such tests, a new method of vibration testing called taxi vibration testing (TVT) rooted in operational modal analysis (OMA) was recently proposed and investigated by the German Institute for Aerospace Research (DLR) as alternative to conventional GVT. In this investigation, a computational framework based on fully coupled flexible multibody dynamics for TVT is presented to further investigate the applicability of the TVT to flexible airframes. The time domain decomposition (TDD) method for OMA was used to postprocess the response of the airframe during a TVT.
Journal Article

Lateral Control for Driverless Mining Trucks with the Consideration of Steering Lag and Vehicle–Road States

2023-12-14
Abstract Lateral control is an essential part of driverless mining truck systems. However, the considerable steering lag and poor tracking accuracy limit the development of unmanned mining. In this article, a dynamic preview distance was designed to resist the steering lag. Then the vehicle–road states, which described the real-time lateral and heading errors between the vehicle and the target road, was defined to describe the control strategy more efficiently. In order to trade off the tracking accuracy and stability, the Takagi–Sugeno (TS) fuzzy method was used to adjust the weight matrix of the linear quadratic regulator (LQR) for different vehicle–road states. Based on the actual mine production environment and the TR100 mining truck, experimental results show that the TS-LQR algorithm performed much better than the pure pursuit algorithm.
Journal Article

Multibody Dynamics Modeling of a Continuous Rubber Track System: Part 2—Experimental Evaluation of Load Prediction

2023-12-07
Abstract Vehicles equipped with rubber track systems feature a high level of performance but are challenging to design due to the complex components involved and the large number of degrees of freedom, thus raising the need to develop validated numerical simulation tools. In this article, a multibody dynamics (MBD) model of a continuous rubber track system developed in Part 1 is compared with extensive experimental data to evaluate the model accuracy over a wide range of operating conditions (tractor speed and rear axle load). The experiment consists of crossing an instrumented bump-shaped obstacle with a tractor equipped with a pair of rubber track systems on the rear axle. Experimental responses are synchronized with simulation results using a cross-correlation approach. The vertical and longitudinal maximum forces predicted by the model, respectively, show average relative errors of 34% and 39% compared to experimental data (1–16 km/h).
Journal Article

Multibody Dynamics Modeling of a Continuous Rubber Track System: Part 1—Model Description

2023-12-06
Abstract Continuous rubber track systems for farming applications are typically designed using multiple iterations on full-scale physical prototypes which is costly and time consuming. The development of numerical design tools could speed up the design process and reduce development costs while improving product performance. In this article, a rigid multibody dynamics (MBD) model of a continuous rubber track system is presented. This article is the first part of a two-part study: Part 1 focuses on the model description and part 2 describes the experimental evaluation of the MBD model. The modeling methodology is based on a track discretization as a set of rigid body elements interconnected by 6 degrees-of-freedom bushing joints. The mathematical formalism and experimental characterization of all critical subsystems such as the roller wheels, tensioner, suspensions, and contact models are also presented.
Journal Article

Design and Failure Analysis of Motorbike Sub-frame Using Finite Element Analysis

2023-12-05
Abstract All two-wheeler industries validate their product’s fatigue life on proving track before heading for mass production. Proving test tracks are made to simulate the end-user environment in order to find out the possible fatigue failures during each development stage of vehicle design, which in turn helps the CAE analysts to verify the design before it goes to the end-user hands. In this article we present the design and failure analysis of sub-frame assembly of motorbike observed during the accelerated fatigue test on proving track. Sub-frame main rod was found broken exactly between two weld endings during fatigue test before reaching 6% of the target fatigue life. Possible causes of sub-frame failures have been identified/analyzed in detail using fish bone diagram. A finite element analysis (FEA) model of sub-frame assembly was developed and a random response analysis was carried out on initial design.
Journal Article

Stochastic Noise Sources for Computational Aeroacoustics of a Vehicle Side Mirror

2023-11-09
Abstract The broadband aeroacoustics of a side mirror is investigated with a stochastic noise source method and compared to scale-resolving simulations. The setup based on an already existing work includes two geometrical variants with a plain series side mirror and a modified mirror with a forward-facing step mounted on the inner side. The aeroacoustic near- and farfield is computed by a hydrodynamic–acoustic splitting approach by means of a perturbed convective wave equation. Aeroacoustic source terms are computed by the Fast Random Particle-Mesh method, a stochastic noise source method modeling velocity fluctuations in time domain based on time-averaged turbulence statistics. Three RANS models are used to provide input data for the Fast Random Particle-Mesh method with fundamental differences in local flow phenomena.
Journal Article

Friction Performance Analysis of Mine Wet Multi-Disc Brake

2023-10-28
Abstract This article takes the wet multi-disc brake used in mining Isuzu 600P as the research object, establishes a simplified three-dimensional model of its key components through SOLIDWORKS and imports it into ANSYS Workbench to establish the flow field and structure field model of the wet brake. Based on the fluid–solid coupling, the finite element simulation of the temperature field and stress field of the friction pair of the wet brake under different braking pressures, braking initial speeds, and fluid viscosities was carried out, and then the position changes of the friction pairs at high temperature hot spots and high stress points were analyzed to determine the stability of its friction performance. Finally, by comparing the temperature change curves of the same point during the braking process under different braking conditions, the validity of the finite element analysis results is verified.
Journal Article

Numerical Analysis and Modelling of the Effectiveness of Micro Wind Turbines Installed in an Electric Vehicle as a Range Extender

2023-10-10
Abstract In recent years, the number of electric vehicles (EVs) has grown rapidly, as well as public interest in them. However, the lack of sufficient range is one of the most common complaints about these vehicles, which is particularly problematic for people with long daily commutes. Thus, this article proposed a solution to this problem by installing micro wind turbines (MWTs) on EVs as a range extender. The turbines will generate electricity by converting the kinetic energy of the air flowing through the MWT into mechanical energy, which can have a reasonable effect on the vehicle aerodynamics. The article uses mathematical modelling and numerical analysis. Regarding the modelling, a detailed EV model in MATLAB/SIMULINK was developed to analyze the EV performance using various driving cycles in real time.
Journal Article

Soft Computing-Based Driver Modeling for Automatic Parking of Articulated Heavy Vehicles

2023-09-09
Abstract Parking an articulated vehicle is a challenging task that requires skill, experience, and visibility from the driver. An automatic parking system for articulated vehicles can make this task easier and more efficient. This article proposes a novel method that finds an optimal path and controls the vehicle with an innovative method while considering its kinematics and environmental constraints and attempts to mathematically explain the behavior of a driver who can perform a complex scenario, called the articulated vehicle park maneuver, without falling into the jackknifing phenomena. In other words, the proposed method models how drivers park articulated vehicles in difficult situations, using different sub-scenarios and mathematical models.
Journal Article

Applications of Neural Networks to Metallic Flexor Geometry Optimization of Flat Wipers

2023-09-09
Abstract In recent years, demands of flat wipers have rapidly increased in the vehicle industry due to their simpler structure compared to the conventional wipers. Procedures for evaluating the appropriate metallic flexor geometry, which is one of the major components of the flat wiper, were proposed in the authors’ previous study. However, the computational cost of the aforementioned procedures seems to be unaffordable to the industry. The discrete Winkler model regarding the flexor as the Euler–Bernoulli beam is established as the mathematical model in this study to simulate a flexor compressed against a surface at various wiping angles. The deflection of the beam is solved using a finite difference method, and the calculated contact pressure distributions agree fairly with those based on the corresponding finite element model. Flexor designs are paired with various windshield surfaces to accumulate a sufficiently large simulation database based on the mathematical model.
Journal Article

Optimizing Hydrogen Fueling Infrastructure Plans on Freight Corridors for Heavy-Duty Fuel Cell Electric Vehicles

2023-08-12
Abstract The development of a future hydrogen energy economy will require the development of several hydrogen market and industry segments including a hydrogen-based commercial freight transportation ecosystem. For a sustainable freight transportation ecosystem, the supporting fueling infrastructure and the associated vehicle powertrains making use of hydrogen fuel will need to be co-established. This article introduces the OR-AGENT (Optimal Regional Architecture Generation for Electrified National Transportation) tool developed at the Oak Ridge National Laboratory, which has been used to optimize the hydrogen refueling infrastructure requirements on the I-75 corridor for heavy-duty (HD) fuel cell electric commercial vehicles (FCEV).
Journal Article

Evaluating the Isolation Performance of Three Seat Suspension Models of Off-Road Vehicles

2023-07-26
Abstract Three suspension structures including the parallel vertical suspension (PVS), the horizontal parallel suspension (HPS), and the negative stiffness element added into suspension (NSES) of the driver’s seat are proposed to improve the driver’s ride comfort of off-road vehicles. Based on the dynamic models of the PVS, HPS, and NSES established and simulated under the same random excitations of the cab floor, the effect of the design parameters of the proposed models is analyzed, and the design parameters are then optimized to evaluate their isolation performance. The indexes of the root-mean-square (r.m.s) accelerations of the vertical seat direction, pitching seat angle, and rolling seat angle are used as the objective functions. The study results indicate that the dynamic parameters of the PVS, HPS, and NSES greatly affect the driver’s ride comfort while their geometrical dimensions insignificantly affect the driver’s ride comfort.
X