Refine Your Search

Topic

Search Results

Journal Article

Experimental Analysis of Heat Transfer Post Quenching of Medium Carbon Steel

2024-05-08
Abstract Transient temperature analysis is involved in the thermal simulation of the heat treatment process, in which the hot metal temperature changes with respect to time from an initial state to the final state. The critical part of the simulation is to determine the heat transfer coefficient (HTC) between the hot part and the quenching medium or quenchant. In liquid quenching, the heat transfer between the hot metal part and water becomes complicated and it is difficult to determine HTC. In the current experimentation a medium carbon steel EN 9 rod with a diameter of 50 mm and length 100 mm was quenched in water and ethylene glycol mixture with different concentrations. A part model was created; meshed and actual boundary conditions were applied to conduct computational fluid dynamics (CFD) analysis. In order to validate CFD analysis the experimental trials were conducted.
Journal Article

Multi-Output Physically Analyzed Neural Network for the Prediction of Tire–Road Interaction Forces

2024-05-08
Abstract This article introduces an innovative method for predicting tire–road interaction forces by exclusively utilizing longitudinal and lateral acceleration measurements. Given that sensors directly measuring these forces are either expensive or challenging to implement in a vehicle, this approach fills a crucial gap by leveraging readily available sensor data. Through the application of a multi-output neural network architecture, the study focuses on simultaneously predicting the longitudinal, lateral, and vertical interaction forces exerted by the rear wheels, specifically those involved in traction. Experimental validation demonstrates the efficacy of the methodology in accurately forecasting tire–road interaction forces. Additionally, a thorough analysis of the input–output relationships elucidates the intricate dynamics characterizing tire–road interactions.
Journal Article

Technical Study for the Development of Air Brake Compressor in Electric Commercial Vehicles

2024-05-07
Abstract The development of electric commercial vehicles brought up novel challenges in the design of efficient and reliable air brake systems. The compressor is one of the critical components of the air brake system and is responsible for supplying pressurized air to the brake system. In this study, we aimed to gather essential information regarding the pressure and flow rate requirements for the compressor in the air brake system of electric commercial vehicles. We extensively analyzed the existing air brake systems utilized in conventional commercial vehicles. We examined the performance characteristics of reciprocating compressors traditionally employed in these systems. Recognizing the need for novel compressor designs tailored to electric commercial vehicles, we focused on identifying the specifics such as efficiency, performance characteristics, reliability, and cost of the compressor.
Journal Article

Control System for Regenerative Braking Efficiency in Electric Vehicles with Electro-Actuated Brakes

2024-05-01
Abstract This article presents the design and the analysis of a control logic capable of optimizing vehicle’s energy consumption during a braking maneuver. The idea arose with the purpose of enhancing regeneration and health management in electric vehicles with electro-actuated brakes. Regenerative braking improves energy efficiency and allows a considerable reduction in secondary emissions, but its efficiency is strongly dependent on the state of charge (SoC) of the battery. In the analyzed case, a vehicle equipped with four in-wheel motors (one for each wheel), four electro-actuated brakes, and a battery was considered. The proposed control system can manage and optimize electrical and energy exchanges between the driveline’s components according to the working conditions, monitoring parameters such as SoC of the battery, brake temperature, battery temperature, motor temperature, and acts to optimize the total energy consumption.
Journal Article

Determination of Air–Fuel Ratio at 1 kHz via Mid-Infrared Laser Absorption and Fast Flame Ionization Detector Measurements in Engine-Out Vehicle Exhaust

2024-04-29
Abstract Measurements of air–fuel ratio (AFR) and λ (AFRactual/AFRstoich) are crucial for understanding internal combustion engine (ICE) performance. However, current λ sensors suffer from long light-off times (on the order of seconds following a cold start) and limited time resolution. In this study, a four-color mid-infrared laser absorption spectroscopy (LAS) sensor was developed to provide 5 kHz measurements of temperature, CO, CO2, and NO in engine-out exhaust. This LAS sensor was then combined with 1 kHz hydrocarbon (HC) measurements from a flame ionization detector (FID), and the Spindt exhaust gas analysis method to provide 1 kHz measurements of λ. To the authors’ knowledge, this is the first time-resolved measurement of λ during engine cold starts using the full Spindt method. Three tests with various engine AFR calibrations were conducted and analyzed: (1) 10% lean, (2) stoichiometric, and (3) 10% rich.
Journal Article

Failure Analysis of Cryogenically Treated and Gas Nitrided Die Steel in Rotating Bending Fatigue

2024-04-24
Abstract AISI H13 hot work tool steel is commonly used for applications such as hot forging and hot extrusion in mechanical working operations that face thermal and mechanical stress fluctuations, leading to premature failures. Cryogenic treatment was applied for AISI H13 steel to improve the surface hardness and thereby fatigue resistance. This work involves failure analysis of H13 steel specimens subjected to cryogenic treatment and gas nitriding. The specimens were heated to 1020°C, oil quenched followed by double tempering at 550°C for 2 h, and subsequently, deep cryogenically treated at −185°C in the cryochamber. Gas nitriding was carried out for 24 h at 500°C for 200 μm case depth in NH3 surroundings. The specimens were subjected to rotating bending fatigue at constant amplitude loading at room temperature.
Journal Article

A Design Optimization Process of Improving the Automotive Subframe Dynamic Stiffness Using Tuned Rubber Mass Damper

2024-04-18
Abstract Automotive subframe is a critical chassis component as it connects with the suspension, drive units, and vehicle body. All the vibration from the uneven road profile and drive units are passed through the subframe to the vehicle body. OEMs usually have specific component-level drive point dynamic stiffness (DPDS) requirements for subframe suppliers to achieve their full vehicle NVH goals. Traditionally, the DPDS improvement for subframes welded with multiple stamping pieces is done by thickness and shape optimization. The thickness optimization usually ends up with a huge mass penalty since the stamping panel thickness has to be changed uniformly not locally. Structure shape and section changes normally only work for small improvements due to the layout limitations. Tuned rubber mass damper (TRMD) has been widely used in the automotive industry to improve the vehicle NVH performance thanks to the minimum mass it adds to the original structure.
Journal Article

Enhancing Regenerative Energy Capture in Electric Vehicle: Braking Performance through Integral Sliding Mode Control

2024-04-18
Abstract This article focuses on the development of an active braking control system tailored for electric vehicles. The essence of this system lies in its ability to regulate the slip coefficient to optimize traction during braking, thereby maximizing energy recuperation. In the context of the simulation on enhancing regenerative energy capture in electric vehicles, the use of integral sliding mode control (ISMC) as an alternative for regulating braking performance can be understood through a comparison of two key output variables in braking control systems: wheel deceleration and wheel slip. Traditionally, wheel deceleration has been a controlled variable in braking systems, and it is still utilized in some anti-lock braking systems (ABS). It can be easily measured using a basic wheel encoder. However, the dynamic performance of wheel deceleration control may suffer when there are rapid changes in the road surface.
Journal Article

TOC

2024-04-15
Abstract TOC
Journal Article

Control Strategy of Semi-Active Suspension Based on Road Roughness Identification

2024-04-13
Abstract Taking the semi-active suspension system as the research object, the forward model and inverse model of a continuous damping control (CDC) damper are established based on the characteristic test of the CDC damper. A multi-mode semi-active suspension controller is designed to meet the diverse requirements of vehicle performance under different road conditions. The controller parameters of each mode are determined using a genetic algorithm. In order to achieve automatic switching of the controller modes under different road conditions, a method is proposed to identify the road roughness based on the sprung mass acceleration. The average of the ratio between the squared sprung mass acceleration and the vehicle speed within a specific time window is taken as the identification indicator for road roughness.
Journal Article

Effect of Shock Absorber Friction on Vehicle Vertical Dynamics

2024-04-10
Abstract In order to efficiently predict and investigate a vehicle’s vertical dynamics, it is necessary to consider the suspension component properties holistically. Although the effects of suspension stiffness and damping characteristics on vertical dynamics are widely understood, the impact of suspension friction in various driving scenarios has rarely been studied in both simulation and road tests for several decades. The present study addresses this issue by performing driving tests using a special device that allows a modification of the shock absorber or damper friction, and thus the suspension friction to be modified independently of other suspension parameters. Initially, its correct functioning is verified on a shock absorber test rig. A calibration and application routine is established in order to assign definite additional friction forces at high reproducibility levels.
Journal Article

Economic Competitiveness of Battery Electric Vehicles vs Internal Combustion Engine Vehicles in India: A Case Study for Two- and Four-Wheelers

2024-04-04
The initial cost of battery electric vehicles (BEVs) is higher than internal combustion engine-powered vehicles (ICEVs) due to expensive batteries. Various factors affect the total cost of ownership of a vehicle. In India, consumers are concerned with a vehicle’s initial purchase cost and prefer owning an economical vehicle. The higher cost and shorter range of BEVs compared to ICEVs severely limit their penetration in the Indian market. However, government subsidies and incentives support BEVs. The total cost of ownership assessment is used to evaluate the entire cost of a vehicle to find the most economical option among different powertrains. This study compares 2W (two-wheeler) and 4W (four-wheeler) BEV’s cost vis-à-vis equivalent ICEVs in Delhi and Mumbai. The cost analysis assesses the current and future government policies to promote BEVs. Two assumed policies were applied to estimate future scenarios.
Journal Article

An Overview of Motion-Planning Algorithms for Autonomous Ground Vehicles with Various Applications

2024-04-03
Abstract With the rapid development and the growing deployment of autonomous ground vehicles (AGVs) worldwide, there is an increasing need to design reliable, efficient, robust, and scalable motion-planning algorithms. These algorithms are crucial for fulfilling the desired goals of safety, comfort, efficiency, and accessibility. To design optimal motion-planning algorithms, it is beneficial to explore existing techniques and make improvements by addressing the limitations of associated techniques, utilizing hybrid algorithms, or developing novel strategies. This article categorizes and overviews numerous motion-planning algorithms for AGVs, shedding light on their strengths and weaknesses for a comprehensive understanding.
Journal Article

Modeling Approach for Hybrid Integration of Renewable Energy Sources with Vehicle-to-Grid Technology

2024-03-29
Abstract This article presents a technical study on the integration of hybrid renewable energy sources (RES) with vehicle-to-grid (V2G) technology, aiming to enhance energy efficiency, grid stability, and mitigating power imbalances. The growing adoption of RES and electric vehicles (EV) necessitates innovative solutions to mitigate intermittency and optimize resource utilization. The study’s primary objective is to design and analyze a hybrid distribution generation system encompassing solar photovoltaic (PV) and wind power stations, along with a conventional diesel generator, connected to the utility grid. A V2G system is strategically embedded within the microgrid to facilitate bidirectional power exchange between EV and the grid. Methodologically, MATLAB/Simulink® 2021a is employed to simulate the system’s performance over one day.
Journal Article

State of Charge Balancing Control for Multiple Output Dynamically Adjustable Capacity System

2024-03-28
Abstract A multiple output dynamically adjustable capacity system (MODACS) is developed to provide multiple voltage output levels while supporting varying power loads by switching multiple battery strings between serial and parallel connections. Each module of the system can service either a low voltage bus by placing its strings in parallel or a high voltage bus with its strings in series. Since MODACS contains several such modules, it can produce multiple voltages simultaneously. By switching which strings and modules service the different output rails and by varying the connection strategy over time, the system can balance the states of charge (SOC) of the strings and modules. A model predictive control (MPC) algorithm is formulated to accomplish this balancing. MODACS operates in various power modes, each of which imposes unique constraints on switching between configurations.
Journal Article

Fire Safety of Battery Electric Vehicles: Hazard Identification, Detection, and Mitigation

2024-03-21
Abstract Battery electric vehicles (EVs) bring significant benefits in reducing the carbon footprint of fossil fuels and new opportunities for adopting renewable energy. Because of their high-energy density and long cycle life, lithium-ion batteries (LIBs) are dominating the battery market, and the consumer demand for LIB-powered EVs is expected to continue to boom in the next decade. However, the chemistry used in LIBs is still vulnerable to experiencing thermal runaway, especially in harsh working conditions. Furthermore, as LIB technology moves to larger scales of power and energy, the safety issues turn out to be the most intolerable pain point of its application in EVs. Its failure could result in the release of toxic gases, fire, and even explosions, causing catastrophic damage to life and property. Vehicle fires are an often-overlooked part of the fire problem. Fire protection and EV safety fall into different disciplines.
Journal Article

Microstructural and Corrosion Behavior of Thin Sheet of Stainless Steel-Grade Super Duplex 2507 by Gas Tungsten Arc Welding

2024-03-21
Abstract Super duplex stainless steel (SDSS) is a type of stainless steel made of chromium (Cr), nickel (Ni), and iron (Fe). In the present work, a 1.6 mm wide thin sheet of SDSS is joined using gas tungsten arc welding (GTAW). The ideal parameter for a bead-on-plate trial is found, and 0.216 kJ/mm of heat input is used for welding. As an outcome of the welding heating cycle and subsequent cooling, a microstructural study revealed coarse microstructure in the heat-affected zone and weld zone. The corrosion rate for welded joints is 9.3% higher than the base metal rate. Following the corrosion test, scanning electron microscope (SEM) analysis revealed that the welded joint’s oxide development generated a larger corrosive attack on the weld surface than the base metal surface. The percentages of chromium (12.5%) and molybdenum (24%) in the welded joints are less than those in the base metal of SDSS, as per energy dispersive X-ray (EDX) analysis.
Journal Article

Experimental Investigation of a Flexible Airframe Taxiing Over an Uneven Runway for Aircraft Vibration Testing

2024-03-01
Abstract The ground vibration test (GVT) is an important phase in a new aircraft development program, or the structural modification of a certified aircraft, to experimentally determine the structural vibrational modes of the aircraft and their modal parameters. These modal parameters are used to validate and correlate the dynamic finite element model of the aircraft to predict potential structural instabilities (such as flutter), assessing the significance of modifications to research vehicles by comparing the modal data before and after the modification and helping to resolve in-flight anomalies. Due to the high cost and the extensive preparations of such tests, a new method of vibration testing called the taxi vibration test (TVT) rooted in operational modal analysis (OMA) was recently proposed and investigated as an alternative method to conventional GVT.
Journal Article

Demonstration of 2027 Emissions Standards Compliance Using Heavy-Duty Gasoline Compression Ignition with P1 Hybridization

2024-02-19
Abstract Heavy-duty on-road engines are expected to conform to an ultralow NOx (ULNOx) standard of 0.027 g/kWh over the composite US heavy-duty transient federal test procedure (HD-FTP) cycle by 2031, a 90% reduction compared to 2010 emissions standards. Additionally, these engines are expected to conform to Phase 2 greenhouse gas regulations, which require tailpipe CO2 emissions under 579 g/kWh. This study experimentally demonstrates the ability of high fuel stratification gasoline compression ignition (HFS-GCI) to satisfy these emissions standards. Steady-state and transient tests are conducted on a prototype multi-cylinder heavy-duty GCI engine based on a 2010-compliant Cummins ISX15 diesel engine with a urea-SCR aftertreatment system (ATS). Steady-state calibration exercises are undertaken to develop highly fuel-efficient GCI calibration maps at both cold-start and warmed up conditions.
Journal Article

Safety Concepts for Future Electromechanical Brake Actuators

2024-02-16
Abstract A growing interest in electromechanical brakes (EMB) is discernible in the automotive industry finding its climax in an announcement of EMB series production in late 2022 [1]. The introduction of EMB allows for new design opportunities using distributed software on smart actuators. However, additional efforts are needed to ensure continuously high levels of safety even when established design principles in the brake system are changed. This article discusses different safety concepts that could potentially be put in place in EMB actuators. Therefore, safety goals that need to be satisfied by an actuator are derived. Furthermore, three different degrees of complexity are differentiated, evolving to different required electronic control units (ECU) and architectures. Additionally, also the safety of the actuation unit (AU) is considered to realize a holistic safety concept for the actuator. Finally, a conclusion is drawn comparing the different investigated concepts.
X