Refine Your Search

Topic

Search Results

Journal Article

Technical Study for the Development of Air Brake Compressor in Electric Commercial Vehicles

2024-05-07
Abstract The development of electric commercial vehicles brought up novel challenges in the design of efficient and reliable air brake systems. The compressor is one of the critical components of the air brake system and is responsible for supplying pressurized air to the brake system. In this study, we aimed to gather essential information regarding the pressure and flow rate requirements for the compressor in the air brake system of electric commercial vehicles. We extensively analyzed the existing air brake systems utilized in conventional commercial vehicles. We examined the performance characteristics of reciprocating compressors traditionally employed in these systems. Recognizing the need for novel compressor designs tailored to electric commercial vehicles, we focused on identifying the specifics such as efficiency, performance characteristics, reliability, and cost of the compressor.
Journal Article

Effects of Hard-to-Measure Material Parameters on Clinching Joint Geometries Using Combined Finite Element Method and Machine Learning

2024-05-06
Abstract In this article, we investigated the effects of material parameters on the clinching joint geometry using finite element model (FEM) simulation and machine learning-based metamodels. The FEM described in this study was first developed to reproduce the shape of clinching joints between two AA5052 aluminum alloy sheets. Neural network metamodels were then used to investigate the relation between material parameters and joint geometry as predicted by FEM. By interpreting the data-driven metamodels using explainable machine learning techniques, the effects of the hard-to-measure material parameters during the clinching are studied. It is demonstrated that the friction between the two metal sheets and the flow stress of the material at high (up to 100%) plastic strain are the most influential factors on the interlock and the neck thickness of the clinching joints. However, their dependence on the material parameters is found to be opposite.
Journal Article

Fuel Efficiency Analysis and Control of a Series Electric Hybrid Compact Wheel Loader

2024-05-03
Abstract The escalating demand for more efficient and sustainable working machines has pushed manufacturers toward adopting electric hybrid technology. Electric powertrains promise significant fuel savings, which are highly dependent on the nature of the duty cycle of the machine. In this study, experimental data measured from a wheel loader in a short-loading Y-cycle is used to exercise a developed mathematical model of a series electric hybrid wheel loader. The efficiency and energy consumption of the studied architecture are analyzed and compared to the consumption of the measured conventional machine that uses a diesel engine and a hydrostatic transmission. The results show at least 30% reduction in fuel consumption by using the proposed series electric hybrid powertrain, the diesel engine rotational speed is steady, and the transient loads are mitigated by the electric powertrain.
Journal Article

Control System for Regenerative Braking Efficiency in Electric Vehicles with Electro-Actuated Brakes

2024-05-01
Abstract This article presents the design and the analysis of a control logic capable of optimizing vehicle’s energy consumption during a braking maneuver. The idea arose with the purpose of enhancing regeneration and health management in electric vehicles with electro-actuated brakes. Regenerative braking improves energy efficiency and allows a considerable reduction in secondary emissions, but its efficiency is strongly dependent on the state of charge (SoC) of the battery. In the analyzed case, a vehicle equipped with four in-wheel motors (one for each wheel), four electro-actuated brakes, and a battery was considered. The proposed control system can manage and optimize electrical and energy exchanges between the driveline’s components according to the working conditions, monitoring parameters such as SoC of the battery, brake temperature, battery temperature, motor temperature, and acts to optimize the total energy consumption.
Journal Article

Enhancing Regenerative Energy Capture in Electric Vehicle: Braking Performance through Integral Sliding Mode Control

2024-04-18
Abstract This article focuses on the development of an active braking control system tailored for electric vehicles. The essence of this system lies in its ability to regulate the slip coefficient to optimize traction during braking, thereby maximizing energy recuperation. In the context of the simulation on enhancing regenerative energy capture in electric vehicles, the use of integral sliding mode control (ISMC) as an alternative for regulating braking performance can be understood through a comparison of two key output variables in braking control systems: wheel deceleration and wheel slip. Traditionally, wheel deceleration has been a controlled variable in braking systems, and it is still utilized in some anti-lock braking systems (ABS). It can be easily measured using a basic wheel encoder. However, the dynamic performance of wheel deceleration control may suffer when there are rapid changes in the road surface.
Journal Article

TOC

2024-04-15
Abstract TOC
Journal Article

Suitability Study of Biofuel Blend for Light Commercial Vehicle Application under Real-World Transient Operating Conditions

2024-04-10
Abstract Driving schedule of every vehicle involves transient operation in the form of changing engine speed and load conditions, which are relatively unchanged during steady-state conditions. As well, the results from transient conditions are more likely to reflect the reality. So, the current research article is focused on analyzing the biofuel-like lemon peel oil (LPO) behavior under real-world transient conditions with fuel injection parameter MAP developed from steady-state experiments. At first, engine parameters and response MAPs are developed by using a response surface methodology (RSM)-based multi-objective optimization technique. Then, the vehicle model has been developed by incorporating real-world transient operating conditions. Finally, the developed injection parameters and response MAPs are embedded in the vehicle model to analyze the biofuel behavior under transient operating conditions.
Journal Article

Bayesian Network Model and Causal Analysis of Ship Collisions in Zhejiang Coastal Waters

2024-04-10
Abstract For taking counter measures in advance to prevent accidental risks, it is of significance to explore the causes and evolutionary mechanism of ship collisions. This article collects 70 ship collision accidents in Zhejiang coastal waters, where 60 cases are used for modeling while 10 cases are used for verification (testing). By analyzing influencing factors (IFs) and causal chains of accidents, a Bayesian network (BN) model with 19 causal nodes and 1 consequential node is constructed. Parameters of the BN model, namely the conditional probability tables (CPTs), are determined by mathematical statistics methods and Bayesian formulas. Regarding each testing case, the BN model’s prediction on probability of occurrence is above 80% (approaching 100% indicates the certainty of occurrence), which verifies the availability of the model. Causal analysis based on the backward reasoning process shows that H (Human error) is the main IF resulting in ship collisions.
Journal Article

Water Droplet Collison and Erosion on High-Speed Spinning Wheels

2024-04-04
Abstract The water droplet erosion (WDE) on high-speed rotating wheels appears in several engineering fields such as wind turbines, stationary steam turbines, fuel cell turbines, and turbochargers. The main reasons for this phenomenon are the high relative velocity difference between the colliding particles and the rotor, as well as the presence of inadequate material structure and surface parameters. One of the latest challenges in this area is the compressor wheels used in turbochargers, which has a speed up to 300,000 rpm and have typically been made of aluminum alloy for decades, to achieve the lowest possible rotor inertia. However, while in the past this component was only encountered with filtered air, nowadays, due to developments in compliance with tightening emission standards, various fluids also collide with the spinning blades, which can cause mechanical damage.
Journal Article

Economic Competitiveness of Battery Electric Vehicles vs Internal Combustion Engine Vehicles in India: A Case Study for Two- and Four-Wheelers

2024-04-04
The initial cost of battery electric vehicles (BEVs) is higher than internal combustion engine-powered vehicles (ICEVs) due to expensive batteries. Various factors affect the total cost of ownership of a vehicle. In India, consumers are concerned with a vehicle’s initial purchase cost and prefer owning an economical vehicle. The higher cost and shorter range of BEVs compared to ICEVs severely limit their penetration in the Indian market. However, government subsidies and incentives support BEVs. The total cost of ownership assessment is used to evaluate the entire cost of a vehicle to find the most economical option among different powertrains. This study compares 2W (two-wheeler) and 4W (four-wheeler) BEV’s cost vis-à-vis equivalent ICEVs in Delhi and Mumbai. The cost analysis assesses the current and future government policies to promote BEVs. Two assumed policies were applied to estimate future scenarios.
Journal Article

An Overview of Motion-Planning Algorithms for Autonomous Ground Vehicles with Various Applications

2024-04-03
Abstract With the rapid development and the growing deployment of autonomous ground vehicles (AGVs) worldwide, there is an increasing need to design reliable, efficient, robust, and scalable motion-planning algorithms. These algorithms are crucial for fulfilling the desired goals of safety, comfort, efficiency, and accessibility. To design optimal motion-planning algorithms, it is beneficial to explore existing techniques and make improvements by addressing the limitations of associated techniques, utilizing hybrid algorithms, or developing novel strategies. This article categorizes and overviews numerous motion-planning algorithms for AGVs, shedding light on their strengths and weaknesses for a comprehensive understanding.
Journal Article

Modeling Approach for Hybrid Integration of Renewable Energy Sources with Vehicle-to-Grid Technology

2024-03-29
Abstract This article presents a technical study on the integration of hybrid renewable energy sources (RES) with vehicle-to-grid (V2G) technology, aiming to enhance energy efficiency, grid stability, and mitigating power imbalances. The growing adoption of RES and electric vehicles (EV) necessitates innovative solutions to mitigate intermittency and optimize resource utilization. The study’s primary objective is to design and analyze a hybrid distribution generation system encompassing solar photovoltaic (PV) and wind power stations, along with a conventional diesel generator, connected to the utility grid. A V2G system is strategically embedded within the microgrid to facilitate bidirectional power exchange between EV and the grid. Methodologically, MATLAB/Simulink® 2021a is employed to simulate the system’s performance over one day.
Journal Article

State of Charge Balancing Control for Multiple Output Dynamically Adjustable Capacity System

2024-03-28
Abstract A multiple output dynamically adjustable capacity system (MODACS) is developed to provide multiple voltage output levels while supporting varying power loads by switching multiple battery strings between serial and parallel connections. Each module of the system can service either a low voltage bus by placing its strings in parallel or a high voltage bus with its strings in series. Since MODACS contains several such modules, it can produce multiple voltages simultaneously. By switching which strings and modules service the different output rails and by varying the connection strategy over time, the system can balance the states of charge (SOC) of the strings and modules. A model predictive control (MPC) algorithm is formulated to accomplish this balancing. MODACS operates in various power modes, each of which imposes unique constraints on switching between configurations.
Journal Article

Fire Safety of Battery Electric Vehicles: Hazard Identification, Detection, and Mitigation

2024-03-21
Abstract Battery electric vehicles (EVs) bring significant benefits in reducing the carbon footprint of fossil fuels and new opportunities for adopting renewable energy. Because of their high-energy density and long cycle life, lithium-ion batteries (LIBs) are dominating the battery market, and the consumer demand for LIB-powered EVs is expected to continue to boom in the next decade. However, the chemistry used in LIBs is still vulnerable to experiencing thermal runaway, especially in harsh working conditions. Furthermore, as LIB technology moves to larger scales of power and energy, the safety issues turn out to be the most intolerable pain point of its application in EVs. Its failure could result in the release of toxic gases, fire, and even explosions, causing catastrophic damage to life and property. Vehicle fires are an often-overlooked part of the fire problem. Fire protection and EV safety fall into different disciplines.
Journal Article

How Drivers Lose Control of the Car

2024-03-06
Abstract After a severe lane change, a wind gust, or another disturbance, the driver might be unable to recover the intended motion. Even though this fact is known by any driver, the scientific investigation and testing on this phenomenon is just at its very beginning, as a literature review, focusing on SAE Mobilus® database, reveals. We have used different mathematical models of car and driver for the basic description of car motion after a disturbance. Theoretical topics such as nonlinear dynamics, bifurcations, and global stability analysis had to be tackled. Since accurate mathematical models of drivers are still unavailable, a couple of driving simulators have been used to assess human driving action. Classic unstable motions such as Hopf bifurcations were found. Such bifurcations seem almost disregarded by automotive engineers, but they are very well-known by mathematicians. Other classic unstable motions that have been found are “unstable limit cycles.”
Journal Article

Employing a Model of Computation for Testing and Verifying the Security of Connected and Autonomous Vehicles

2024-03-05
Abstract Testing and verifying the security of connected and autonomous vehicles (CAVs) under cyber-physical attacks is a critical challenge for ensuring their safety and reliability. Proposed in this article is a novel testing framework based on a model of computation that generates scenarios and attacks in a closed-loop manner, while measuring the safety of the unit under testing (UUT), using a verification vector. The framework was applied for testing the performance of two cooperative adaptive cruise control (CACC) controllers under false data injection (FDI) attacks. Serving as the baseline controller is one of a traditional design, while the proposed controller uses a resilient design that combines a model and learning-based algorithm to detect and mitigate FDI attacks in real-time.
Journal Article

Longitudinal Air-Breathing Hypersonic Vehicle Nonlinear Dynamic Simulation with Different Control Inputs

2024-03-04
Abstract The air-breathing hypersonic vehicle (AHV) holds the potential to revolutionize global travel, enabling rapid transportation to low-Earth orbit and even space within the next few decades. This study focuses on investigating the nonlinear dynamic simulation, trim, and stability analysis of a three-degrees-of-freedom (3DOF) longitudinal model of a generic AHV for variable control surface deflection, δe and δr. A simulation is developed to analyze the burstiness of the AHV’s nonlinear longitudinal behavior, considering the complete flight envelope across a wide range of Mach numbers, from M = 0 to 24, for selected stable M. The presented simulation assesses trim analysis and explores the dynamic stability of the AHV through its flight envelope and bifurcation method analysis is carried out to gain insight and validate the dynamic stability using eigen value approach.
Journal Article

Low-Cost Throttle-by-Wire-System Architecture for Two-Wheeler Vehicles

2024-03-04
Abstract This article investigates the performance of a low-cost throttle-by-wire-system (TbWS) for two-wheeler applications. Mopeds/scooters are still restricted as environmentally harmful. TbWSs can contribute to environmental protection by replacing conventional restrictors. Its consisting of an anisotropic magnetoresistance (AMR) throttle position sensor and a position-controlled stepper motor-driven throttle valve actuator. The decentralized throttle position sensor is operating contactless and acquires redundant data. Throttle valve actuation is realized through a position-controlled stepper motor, sensing its position feedback by Hall effect. Using a PI controller, the stepper motor position is precisely set. Both units transmit and receive data by a CAN bus. Furthermore, fail-safe functions, plausibility checks, calibration algorithms, and energy-saving modes have been implemented.
Journal Article

Weld Fatigue Damage Assessment of Rail Track Maintenance Equipment: Regulatory Compliance and Practical Insights

2024-03-04
Abstract The use of appropriate loads and regulations is of great importance in weld fatigue assessment of rail on-track maintenance equipment and similar vehicles for optimized design. The regulations and available loads, however, are often generalized for several categories, which proves to be overly conservative for some specific categories of machines. EN (European Norm) and AAR (Association of American Railroads) regulations play a pivotal role in determining the applicable loads and acceptance criteria within this study. The availability of track-induced fatigue load data for the cumulative damage approach in track maintenance machines is often limited. Consequently, the FEA-based validation of rail track maintenance equipment often resorts to the infinite life approach rather than cumulative damage approach for track-induced travel loads, resulting in overly conservative designs.
Journal Article

Experimental Investigation of a Flexible Airframe Taxiing Over an Uneven Runway for Aircraft Vibration Testing

2024-03-01
Abstract The ground vibration test (GVT) is an important phase in a new aircraft development program, or the structural modification of a certified aircraft, to experimentally determine the structural vibrational modes of the aircraft and their modal parameters. These modal parameters are used to validate and correlate the dynamic finite element model of the aircraft to predict potential structural instabilities (such as flutter), assessing the significance of modifications to research vehicles by comparing the modal data before and after the modification and helping to resolve in-flight anomalies. Due to the high cost and the extensive preparations of such tests, a new method of vibration testing called the taxi vibration test (TVT) rooted in operational modal analysis (OMA) was recently proposed and investigated as an alternative method to conventional GVT.
X